Suppr超能文献

牛津纳米孔MinION测序与基因组组装

Oxford Nanopore MinION Sequencing and Genome Assembly.

作者信息

Lu Hengyun, Giordano Francesca, Ning Zemin

机构信息

National Centre of Gene Research, Chinese Academy of Sciences, Shanghai 200233, China.

The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.

出版信息

Genomics Proteomics Bioinformatics. 2016 Oct;14(5):265-279. doi: 10.1016/j.gpb.2016.05.004. Epub 2016 Sep 17.

Abstract

The revolution of genome sequencing is continuing after the successful second-generation sequencing (SGS) technology. The third-generation sequencing (TGS) technology, led by Pacific Biosciences (PacBio), is progressing rapidly, moving from a technology once only capable of providing data for small genome analysis, or for performing targeted screening, to one that promises high quality de novo assembly and structural variation detection for human-sized genomes. In 2014, the MinION, the first commercial sequencer using nanopore technology, was released by Oxford Nanopore Technologies (ONT). MinION identifies DNA bases by measuring the changes in electrical conductivity generated as DNA strands pass through a biological pore. Its portability, affordability, and speed in data production makes it suitable for real-time applications, the release of the long read sequencer MinION has thus generated much excitement and interest in the genomics community. While de novo genome assemblies can be cheaply produced from SGS data, assembly continuity is often relatively poor, due to the limited ability of short reads to handle long repeats. Assembly quality can be greatly improved by using TGS long reads, since repetitive regions can be easily expanded into using longer sequencing lengths, despite having higher error rates at the base level. The potential of nanopore sequencing has been demonstrated by various studies in genome surveillance at locations where rapid and reliable sequencing is needed, but where resources are limited.

摘要

在成功的第二代测序(SGS)技术之后,基因组测序革命仍在继续。由太平洋生物科学公司(PacBio)引领的第三代测序(TGS)技术正在迅速发展,从一种曾经仅能为小基因组分析提供数据或进行靶向筛查的技术,发展成为一种有望对人类大小的基因组进行高质量从头组装和结构变异检测的技术。2014年,牛津纳米孔技术公司(ONT)发布了首款使用纳米孔技术的商业测序仪MinION。MinION通过测量DNA链穿过生物孔时产生的电导率变化来识别DNA碱基。它的便携性、可承受性以及数据生成速度使其适用于实时应用,因此长读长测序仪MinION的发布在基因组学界引起了极大的兴奋和关注。虽然利用SGS数据可以廉价地进行从头基因组组装,但由于短读长处理长重复序列的能力有限,组装的连续性往往相对较差。使用TGS长读长可以大大提高组装质量,因为尽管在碱基水平上错误率较高,但重复区域可以通过使用更长的测序长度轻松扩展。纳米孔测序的潜力已在各种需要快速可靠测序但资源有限的基因组监测研究中得到证明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/399d/5093776/08de7867b05d/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验