Suppr超能文献

推进长读长纳米孔基因组组装及准确的变异检测以用于罕见病诊断。

Advancing long-read nanopore genome assembly and accurate variant calling for rare disease detection.

作者信息

Negi Shloka, Stenton Sarah L, Berger Seth I, McNulty Brandy, Violich Ivo, Gardner Joshua, Hillaker Todd, O'Rourke Sara M, O'Leary Melanie C, Carbonell Elizabeth, Austin-Tse Christina, Lemire Gabrielle, Serrano Jillian, Mangilog Brian, VanNoy Grace, Kolmogorov Mikhail, Vilain Eric, O'Donnell-Luria Anne, Délot Emmanuèle, Miga Karen H, Monlong Jean, Paten Benedict

出版信息

medRxiv. 2024 Aug 22:2024.08.22.24312327. doi: 10.1101/2024.08.22.24312327.

Abstract

More than 50% of families with suspected rare monogenic diseases remain unsolved after whole genome analysis by short read sequencing (SRS). Long-read sequencing (LRS) could help bridge this diagnostic gap by capturing variants inaccessible to SRS, facilitating long-range mapping and phasing, and providing haplotype-resolved methylation profiling. To evaluate LRS's additional diagnostic yield, we sequenced a rare disease cohort of 98 samples, including 41 probands and some family members, using nanopore sequencing, achieving per sample ∼36x average coverage and 32 kilobase (kb) read N50 from a single flow cell. Our Napu pipeline generated assemblies, phased variants, and methylation calls. LRS covered, on average, coding exons in ∼280 genes and ∼5 known Mendelian disease genes that were not covered by SRS. In comparison to SRS, LRS detected additional rare, functionally annotated variants, including SVs and tandem repeats, and completely phased 87% of protein-coding genes. LRS detected additional variants, and could be used to distinguish postzygotic mosaic variants from prezygotic . Eleven probands were solved, with diverse underlying genetic causes including and compound heterozygous variants, large-scale SVs, and epigenetic modifications. Our study demonstrates LRS's potential to enhance diagnostic yield for rare monogenic diseases, implying utility in future clinical genomics workflows.

摘要

超过50%疑似患有罕见单基因疾病的家庭在通过短读长测序(SRS)进行全基因组分析后仍未得到诊断。长读长测序(LRS)可以通过捕获SRS无法检测到的变异、促进长距离图谱绘制和定相,以及提供单倍型解析的甲基化图谱分析,来帮助弥合这一诊断差距。为了评估LRS额外的诊断效能,我们使用纳米孔测序对一个包含98个样本的罕见病队列进行了测序,其中包括41名先证者和一些家庭成员,从单个流动槽中获得了每个样本约36倍的平均覆盖度和32千碱基(kb)的读长N50。我们的Napu流程生成了组装序列、定相变异和甲基化分析结果。LRS平均覆盖了约280个基因的编码外显子和约5个未被SRS覆盖的已知孟德尔疾病基因。与SRS相比,LRS检测到了更多罕见的、具有功能注释的变异,包括结构变异(SVs)和串联重复,并对87%的蛋白质编码基因进行了完全定相。LRS检测到了更多变异,并可用于区分合子后嵌合变异和合子前变异。11名先证者得到了诊断,其潜在遗传病因多种多样,包括杂合变异和复合杂合变异、大规模SVs以及表观遗传修饰。我们的研究证明了LRS在提高罕见单基因疾病诊断效能方面的潜力,这意味着它在未来临床基因组学工作流程中具有实用价值。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验