Negi Shloka, Stenton Sarah L, Berger Seth I, McNulty Brandy, Violich Ivo, Gardner Joshua, Hillaker Todd, O'Rourke Sara M, O'Leary Melanie C, Carbonell Elizabeth, Austin-Tse Christina, Lemire Gabrielle, Serrano Jillian, Mangilog Brian, VanNoy Grace, Kolmogorov Mikhail, Vilain Eric, O'Donnell-Luria Anne, Délot Emmanuèle, Miga Karen H, Monlong Jean, Paten Benedict
medRxiv. 2024 Aug 22:2024.08.22.24312327. doi: 10.1101/2024.08.22.24312327.
More than 50% of families with suspected rare monogenic diseases remain unsolved after whole genome analysis by short read sequencing (SRS). Long-read sequencing (LRS) could help bridge this diagnostic gap by capturing variants inaccessible to SRS, facilitating long-range mapping and phasing, and providing haplotype-resolved methylation profiling. To evaluate LRS's additional diagnostic yield, we sequenced a rare disease cohort of 98 samples, including 41 probands and some family members, using nanopore sequencing, achieving per sample ∼36x average coverage and 32 kilobase (kb) read N50 from a single flow cell. Our Napu pipeline generated assemblies, phased variants, and methylation calls. LRS covered, on average, coding exons in ∼280 genes and ∼5 known Mendelian disease genes that were not covered by SRS. In comparison to SRS, LRS detected additional rare, functionally annotated variants, including SVs and tandem repeats, and completely phased 87% of protein-coding genes. LRS detected additional variants, and could be used to distinguish postzygotic mosaic variants from prezygotic . Eleven probands were solved, with diverse underlying genetic causes including and compound heterozygous variants, large-scale SVs, and epigenetic modifications. Our study demonstrates LRS's potential to enhance diagnostic yield for rare monogenic diseases, implying utility in future clinical genomics workflows.
超过50%疑似患有罕见单基因疾病的家庭在通过短读长测序(SRS)进行全基因组分析后仍未得到诊断。长读长测序(LRS)可以通过捕获SRS无法检测到的变异、促进长距离图谱绘制和定相,以及提供单倍型解析的甲基化图谱分析,来帮助弥合这一诊断差距。为了评估LRS额外的诊断效能,我们使用纳米孔测序对一个包含98个样本的罕见病队列进行了测序,其中包括41名先证者和一些家庭成员,从单个流动槽中获得了每个样本约36倍的平均覆盖度和32千碱基(kb)的读长N50。我们的Napu流程生成了组装序列、定相变异和甲基化分析结果。LRS平均覆盖了约280个基因的编码外显子和约5个未被SRS覆盖的已知孟德尔疾病基因。与SRS相比,LRS检测到了更多罕见的、具有功能注释的变异,包括结构变异(SVs)和串联重复,并对87%的蛋白质编码基因进行了完全定相。LRS检测到了更多变异,并可用于区分合子后嵌合变异和合子前变异。11名先证者得到了诊断,其潜在遗传病因多种多样,包括杂合变异和复合杂合变异、大规模SVs以及表观遗传修饰。我们的研究证明了LRS在提高罕见单基因疾病诊断效能方面的潜力,这意味着它在未来临床基因组学工作流程中具有实用价值。