Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; Department of Mechanical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; Department of Orthopaedic Surgery, University of California Davis Medical Center, 4860 Y Street, Suite 3800, Sacramento CA, 95817, USA.
J Biomech. 2022 Oct;143:111267. doi: 10.1016/j.jbiomech.2022.111267. Epub 2022 Aug 22.
Because model-based radiostereometric analysis (MBRSA) identifies tibial baseplate designs which increase risk of baseplate loosening, and because registration errors for computer-aided design (CAD) models are large relative to a 6-month stability limit, 3D models more representative of the geometry of implanted baseplates are needed to minimize error. This study tested whether (1) each of three reverse-engineered (RE) models of the same nominal size reduced registration error relative to the equivalent size CAD model, and (2) RE models of multiple sizes reduced registration error relative to CAD models of corresponding sizes. Registration error, quantified as mean artifactual maximum total point motion (aMTPM), was computed between double biplanar radiographs (i.e., two pairs of independent biplanar radiographs from the same day) for thirty-five patients. Double biplanar radiographs were analyzed four times for the most common baseplate size (i.e., size 5) using three RE models and the corresponding CAD model (1st hypothesis) and twice for all patients using one RE model and the equivalent size CAD model (2nd hypothesis). For all three size 5 RE models, mean aMTPM was less than that of the CAD model, though only one RE model reached statistical significance. For multiple size models, mean aMTPM was reduced by 24% when using RE models instead of CAD models, which could mean the difference between categorizing a baseplate as at-risk versus not at-risk relative to a 6-month stability limit. Since error reduction is related to geometry of specific baseplate designs, other baseplate designs should be evaluated using methods presented herein.
由于基于模型的放射立体分析(MBRSA)可以识别出增加基板松动风险的胫骨基板设计,并且由于计算机辅助设计(CAD)模型的注册误差相对于 6 个月的稳定性极限较大,因此需要更能代表植入基板几何形状的 3D 模型,以最大程度地减少误差。本研究测试了以下两种情况:(1)相同标称尺寸的三个逆向工程(RE)模型中的每一个是否都减少了与等效 CAD 模型的注册误差;(2)多个尺寸的 RE 模型是否相对于相应尺寸的 CAD 模型减少了注册误差。通过对 35 名患者的 35 个双平面 X 射线(即同一天的两对独立的双平面 X 射线)进行计算,得出注册误差,以平均人为最大总点运动(aMTPM)表示。对于最常见的基板尺寸(即尺寸 5),使用三个 RE 模型和相应的 CAD 模型对双平面 X 射线进行了 4 次分析(第 1 个假设),并且对于所有患者,使用一个 RE 模型和等效尺寸的 CAD 模型进行了 2 次分析(第 2 个假设)。对于所有三个尺寸 5 的 RE 模型,平均 aMTPM 均小于 CAD 模型,尽管只有一个 RE 模型达到了统计学意义。对于多种尺寸的模型,使用 RE 模型而不是 CAD 模型可以将平均 aMTPM 降低 24%,这可能意味着相对于 6 个月的稳定性极限,将基板分类为有风险或无风险之间的差异。由于误差的减少与特定基板设计的几何形状有关,因此应使用本文介绍的方法来评估其他基板设计。