Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
Chemosphere. 2022 Dec;308(Pt 2):136342. doi: 10.1016/j.chemosphere.2022.136342. Epub 2022 Sep 7.
Molecular docking, molecular dynamics modelling, and fractional factorial design methodologies were used in the current work to examine the harmful effects of ten microplastic (MPs) such as polystyrene (PS), polyvinylchloride (PVC), polyurethane (PU), polymethyl methacrylate (PMMA), polyamide (PA), polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polychloropene (PCP) and polycarbonate (PC) on the aquatic organism (zebrafish). The toxicity was evaluated based on the docking of the MPs on cytochrome P450 (CYP P450) protein crystals. The binding affinities (ΔG) followed the order, PC (-6.9 kcal/mol) > PET (-6.1 kcal/mol) > PP (-5.8 kcal/mol) > PA (-5.6 kcal/mol) > PS (-5.1 kcal/mol) > PU (-4.1 kcal/mol) > PMMA (-3.9 kcal/mol) > PCP (-3.3 kcal/mol) > PVC (-2.4 kcal/mol) > PE (-2.1 kcal/mol). The primary driving factors for the binding of the MPs and the protein were hydrophobic force, and hydrogen bonding based on the molecular dynamics analysis and surrounding amino acid residues. Furthermore, a 2 fractional factorial design method was estimated to identify the main effect and second-order effects of MPs in a composite contamination system on binding affinity/energy to CYP450 receptor protein of zebrafish, combined with a fixed effects model. The findings showed that different MPs combinations had varying impacts on aquatic toxicity; as a consequence, the best combination of MPs with the lowest aquatic toxicity effect could be excluded. The factorial designs showed that the PU-PS and PP-PA combination and single PCP, has the most significant main effect on CYP450 receptor protein of zebrafish which translates to an optimum toxicity level of -4.61 kcal/mol. The investigation offers a theoretical foundation for identifying the hazardous impacts of MPs on aquatic life.
目前的工作采用分子对接、分子动力学建模和部分因子设计方法,研究了十种微塑料(MPs),如聚苯乙烯(PS)、聚氯乙烯(PVC)、聚氨酯(PU)、聚甲基丙烯酸甲酯(PMMA)、聚酰胺(PA)、聚对苯二甲酸乙二醇酯(PET)、聚乙烯(PE)、聚丙烯(PP)、聚氯丁二烯(PCP)和聚碳酸酯(PC)对水生生物(斑马鱼)的有害影响。毒性评估基于 MPs 在细胞色素 P450(CYP P450)蛋白晶体上的对接。结合亲和力(ΔG)的顺序为 PC(-6.9 kcal/mol)>PET(-6.1 kcal/mol)>PP(-5.8 kcal/mol)>PA(-5.6 kcal/mol)>PS(-5.1 kcal/mol)>PU(-4.1 kcal/mol)>PMMA(-3.9 kcal/mol)>PCP(-3.3 kcal/mol)>PVC(-2.4 kcal/mol)>PE(-2.1 kcal/mol)。分子动力学分析和周围氨基酸残基表明,MPs 与蛋白质结合的主要驱动力是疏水作用力和氢键。此外,采用 2 部分因子设计方法,结合固定效应模型,估计 MPs 在复合污染系统中对斑马鱼 CYP450 受体蛋白结合亲和力/能量的主要效应和二阶效应。研究结果表明,不同 MPs 组合对水生毒性有不同的影响;因此,可以排除对水生毒性影响最小的最佳 MPs 组合。因子设计表明,PU-PS 和 PP-PA 组合以及单一 PCP 对斑马鱼 CYP450 受体蛋白的主要影响最大,这意味着毒性水平最佳为-4.61 kcal/mol。该研究为识别 MPs 对水生生物的危害影响提供了理论基础。