Suppr超能文献

一种导致疾病的人类护骨素变体的生化特征。

Biochemical characterization of a disease-causing human osteoprotegerin variant.

机构信息

Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, SUNY, Buffalo, NY 14214, USA.

出版信息

Sci Rep. 2022 Sep 10;12(1):15279. doi: 10.1038/s41598-022-19522-9.

Abstract

Recently, a human mutation of OPG was identified to be associated with familial forms of osteoarthritis. This missense mutation (c.1205A =  > T; p.Stop402Leu) occurs on the stop codon of OPG, which results in a 19-residue appendage to the C-terminus (OPG). The biochemical consequence of this unusual sequence alteration remains unknown. Here we expressed OPG in 293 cells and the mutant OPG was purified to homogeneity by heparin affinity chromatography and size exclusion chromatography. We found that in sharp contrast to wildtype OPG, which mainly exists in dimeric form, OPG had a strong tendency to form higher-order oligomers. To our surprise, the hyper-oligomerization of OPG had no impact on how it binds cell surface heparan sulfate, how it inhibits RANKL-induced osteoclastogenesis and TRAIL-induced chondrocytes apoptosis. Our data suggest that in biological contexts where OPG is known to play a role, OPG functions equivalently as wildtype OPG. The disease-causing mechanism of OPG likely involves an unknown function of OPG in cartilage homeostasis and mineralization. By demonstrating the biochemical nature of this disease-causing OPG mutant, our study will likely help elucidating the biological roles of OPG in cartilage biology.

摘要

最近,发现一种 OPG 的人类突变与家族性骨关节炎有关。这种错义突变(c.1205A =  > T;p.Stop402Leu)发生在 OPG 的终止密码子上,导致 C 末端(OPG)增加了 19 个残基。这种不寻常的序列改变的生化后果仍然未知。在这里,我们在 293 细胞中表达了 OPG,并用肝素亲和层析和分子筛层析对突变型 OPG 进行了纯化为均相。我们发现,与主要以二聚体形式存在的野生型 OPG 形成鲜明对比的是,OPG 具有强烈的形成更高阶寡聚体的趋势。令我们惊讶的是,OPG 的超寡聚化对其与细胞表面硫酸乙酰肝素的结合方式、抑制 RANKL 诱导的破骨细胞生成和 TRAIL 诱导的软骨细胞凋亡的方式没有影响。我们的数据表明,在已知 OPG 发挥作用的生物学背景下,OPG 的功能与野生型 OPG 相当。OPG 致病的机制可能涉及 OPG 在软骨稳态和矿化中的未知功能。通过证明这种致病的 OPG 突变体的生化性质,我们的研究可能有助于阐明 OPG 在软骨生物学中的生物学作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfa3/9464236/c1e9adc98fa1/41598_2022_19522_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验