Suppr超能文献

利用自我报告的慢性病和健康结果验证地理空间健康指数。

Validating a geospatial healthfulness index with self-reported chronic disease and health outcomes.

作者信息

Sadler Richard C, Wojciechowski Thomas W, Buchalski Zachary, Smart Mieka, Mulheron Megan, Todem David

机构信息

Division of Public Health, Michigan State University, USA.

School of Criminal Justice, Michigan State University, USA.

出版信息

Soc Sci Med. 2022 Oct;311:115291. doi: 10.1016/j.socscimed.2022.115291. Epub 2022 Aug 27.

Abstract

Leveraging community engagement from past research may yield frameworks on which to build new inquiries. We previously integrated community voice into the development of a healthfulness index to increase awareness of social determinants of health in the built environment and inform deployment of public health interventions in the Flint (Michigan, USA) Center for Health Equity Solutions. Here we combine the healthfulness index with self-reported chronic disease and health outcomes (n = 12,279) from a community-based healthcare entity, the Genesee Health Plan. The healthfulness index purports to predict how health-promoting a neighborhood is based on many spatially varying characteristics; by linking our health plan data to this index, we validate the effectiveness of the healthfulness index. After geocoding all enrollees and joining their healthfulness scores, we conducted a series of logistic regressions to compare the relationship between self-reported outcomes and healthfulness. Matching the two intervention projects of our center (revolving around healthy eating & physical activity in project 1 and mental health sustainment & substance use prevention in project 2), our analyses also focused on classes of outcomes related to a) cardiovascular disease and b) mental health. In only select cases, higher (better) healthfulness scores from each project were independently associated with better cardiovascular and mental health outcomes, controlling for age, race, and sex. Generally, however, healthfulness did not add predictive strength to the association between health and sociodemographic covariates. Even so, the use of composite healthfulness indices to describe the health-promoting or degrading qualities of a neighborhood could be valuable in identifying differences in health outcomes. Future researchers could further explore healthcare claims datasets to increase understanding of the links between healthfulness and health outcomes. This and future work will be valuable in advocacy toward additional healthfulness indices to aid other communities in enriching understanding between the built environment and health.

摘要

利用以往研究中的社区参与可能会产生可用于开展新调查的框架。我们之前将社区意见纳入了健康指数的制定过程,以提高对建筑环境中健康的社会决定因素的认识,并为美国密歇根州弗林特市健康公平解决方案中心的公共卫生干预措施的部署提供信息。在此,我们将健康指数与来自社区医疗实体杰纳西健康计划的自我报告慢性病和健康结果(n = 12279)相结合。健康指数旨在根据许多空间变化特征预测一个社区促进健康的程度;通过将我们的健康计划数据与该指数相联系,我们验证了健康指数的有效性。在对所有登记者进行地理编码并加入他们的健康得分后,我们进行了一系列逻辑回归分析,以比较自我报告结果与健康程度之间的关系。与我们中心的两个干预项目(项目1围绕健康饮食和体育活动,项目2围绕心理健康维持和物质使用预防)相匹配,我们的分析还聚焦于与以下方面相关的结果类别:a)心血管疾病和b)心理健康。仅在某些特定情况下,在控制年龄、种族和性别后,每个项目中较高(更好)的健康得分与更好的心血管和心理健康结果独立相关。然而,总体而言,健康程度并未增加健康与社会人口统计学协变量之间关联的预测强度。即便如此,使用综合健康指数来描述一个社区促进健康或有损健康的特质,在识别健康结果差异方面可能具有价值。未来的研究人员可以进一步探索医疗保健理赔数据集,以增进对健康程度与健康结果之间联系的理解。这项工作以及未来的工作对于倡导更多健康指数以帮助其他社区深化对建筑环境与健康之间关系的理解将具有重要意义。

相似文献

8
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验