Suppr超能文献

卡方自动交互检测决策树分析模型:预测腹腔感染中头孢美唑的反应。

Chi-square automatic interaction detector decision tree analysis model: Predicting cefmetazole response in intra-abdominal infection.

机构信息

Department of General Internal Medicine, St. Luke's International Hospital, Tokyo, Japan.

Division of General Internal Medicine, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, Japan.

出版信息

J Infect Chemother. 2023 Jan;29(1):7-14. doi: 10.1016/j.jiac.2022.09.002. Epub 2022 Sep 9.

Abstract

BACKGROUND

Cefmetazole is used as the first-line treatment for intra-abdominal infections. However, only a few studies have investigated the risk factors for cefmetazole treatment failure.

AIMS

This study aimed to develop a decision tree-based predictive model to assess the effectiveness of cefmetazole in initial intra-abdominal infection treatment to improve the clinical treatment strategies.

METHODS

This retrospective cohort study included adult patients who were unexpectedly hospitalized due to intra-abdominal infections between 2003 and 2020 and initially treated with cefmetazole. The primary outcome was clinical intra-abdominal infection improvement. The chi-square automatic interaction detector decision tree analysis was used to create a predictive model for clinical improvement after cefmetazole treatment.

RESULTS

Among 2,194 patients, 1,807 (82.4%) showed clinical improvement post-treatment; their mean age was 48.7 (standard deviation: 18.8) years, and 1,213 (55.3%) patients were men. The intra-abdomせinal infections were appendicitis (n = 1,186, 54.1%), diverticulitis (n = 334, 15.2%), and pancreatitis (n = 285, 13.0%). The chi-square automatic interaction detector decision tree analysis identified the intra-abdominal infection type, C-reactive protein level, heart rate, and body temperature as predictive factors by categorizing patients into seven groups. The area under the receiver operating characteristic curve was 0.71 (95% confidence interval: 0.68-0.73).

CONCLUSION

This predictive model is easily understandable visually and may be applied in clinical practice.

摘要

背景

头孢美唑被用作治疗腹腔内感染的一线药物。然而,仅有少数研究调查了头孢美唑治疗失败的风险因素。

目的

本研究旨在建立基于决策树的预测模型,以评估头孢美唑在初始腹腔内感染治疗中的有效性,从而改善临床治疗策略。

方法

这是一项回顾性队列研究,纳入了 2003 年至 2020 年间因腹腔内感染而意外住院并最初接受头孢美唑治疗的成年患者。主要结局是腹腔内感染的临床改善。采用卡方自动交互检测决策树分析,建立头孢美唑治疗后临床改善的预测模型。

结果

在 2194 名患者中,1807 名(82.4%)在治疗后表现出临床改善;他们的平均年龄为 48.7 岁(标准差:18.8),1213 名(55.3%)患者为男性。腹腔内感染的类型为阑尾炎(n=1186,54.1%)、憩室炎(n=334,15.2%)和胰腺炎(n=285,13.0%)。卡方自动交互检测决策树分析通过将患者分为七组,确定了腹腔内感染类型、C 反应蛋白水平、心率和体温作为预测因素。受试者工作特征曲线下面积为 0.71(95%置信区间:0.68-0.73)。

结论

该预测模型具有直观易懂的特点,可能适用于临床实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验