Suppr超能文献

肝脏流动补偿弥散图像中减少心脏搏动伪影和提高病灶显著性-后处理算法的定量评估。

Reduction of the cardiac pulsation artifact and improvement of lesion conspicuity in flow-compensated diffusion images in the liver-A quantitative evaluation of postprocessing algorithms.

机构信息

Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.

Abteilung für Radiologie, Klinikum Forchheim - Fränkische Schweiz, Forchheim, Germany.

出版信息

Magn Reson Med. 2023 Jan;89(1):423-439. doi: 10.1002/mrm.29427. Epub 2022 Sep 11.

Abstract

PURPOSE

To enhance image quality of flow-compensated diffusion-weighted liver MRI data by increasing the lesion conspicuity and reducing the cardiac pulsation artifact using postprocessing algorithms.

METHODS

Diffusion-weighted image data of 40 patients with liver lesions had been acquired at 1.5 T. These data were postprocessed with 5 different algorithms (weighted averaging, p-mean, percentile, outlier exclusion, and exception set). Four image properties of the postprocessed data were evaluated for optimizing the algorithm parameters. These properties were the lesion to tissue contrast-to-noise ratio (CNR), the reduction of the cardiac pulsation artifact, the data consistency, and the vessel darkness. They were combined into a total quality score ( set to 1 for the trace-weighted reference image), which was used to rate the image quality objectively.

RESULTS

The weighted averaging algorithm performed best according to the total quality score ( ). The further ranking was outlier exclusion algorithm ( ), p-mean algorithm ( ), percentile algorithm ( ), and exception set algorithm ( ). All optimized algorithms except for the exception set algorithm corrected the pulsation artifact and increased the lesion CNR. Changes in were significant for all optimized algorithms except for the percentile algorithm. Liver ADC was significantly reduced (except for the exception set algorithm), particularly in the left lobe.

CONCLUSION

Postprocessing algorithms should be used for flow-compensated liver DWI. The proposed weighted averaging algorithm seems to be suited best to increase the image quality of artifact-corrupted flow-compensated diffusion-weighted liver data.

摘要

目的

通过使用后处理算法提高流动补偿扩散加权肝脏 MRI 数据的图像质量,以增加病变的显著性并减少心脏搏动伪影。

方法

在 1.5T 处获取了 40 名患有肝脏病变的患者的扩散加权图像数据。这些数据使用 5 种不同的算法(加权平均、p-mean、百分位数、异常值排除和异常值集)进行了后处理。为了优化算法参数,对后处理数据的 4 种图像属性进行了评估。这些属性是病变与组织的对比噪声比(CNR)、减少心脏搏动伪影、数据一致性和血管暗化。它们被组合成一个总质量评分(trace-weighted 参考图像的 为 1),用于客观地评价图像质量。

结果

加权平均算法根据总质量评分( )表现最佳。进一步的排名是异常值排除算法( )、p-mean 算法( )、百分位数算法( )和异常值集算法( )。除异常值集算法外,所有优化算法均纠正了搏动伪影并增加了病变 CNR。除百分位数算法外,所有优化算法的变化均具有统计学意义。肝脏 ADC 显著降低(除异常值集算法外),尤其是左叶。

结论

应使用后处理算法对流动补偿肝脏 DWI 进行处理。所提出的加权平均算法似乎最适合提高受伪影干扰的流动补偿扩散加权肝脏数据的图像质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验