Schuett Judith, Pescher Fiona, Neitzel-Grieshammer Steffen
Helmholtz-Institut Münster (IEK-12), Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany.
Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
Phys Chem Chem Phys. 2022 Sep 21;24(36):22154-22167. doi: 10.1039/d2cp03621e.
Due to the high sodium ion conductivity, sodium super ionic conductors (NASICONs) are among the most promising candidates as solid electrolytes in solid state batteries and have therefore gained enormous attention in recent years. Previous experimental and computational investigations show excellent sodium ion conductivity for NaZrSiPO with = 2-2.5. In order to elucidate the conductivity maximum at high substitution levels, we investigate the influence of the cation environment on the site energies of sodium ions and the correlated migration using density functional theory. The results reveal that the site energy strongly depends on electrostatic effects. In addition, an increasing fraction of sodium and silicon ions enhances the correlated migration due to the increasing coulombic repulsion of sodium ions and opening of the bottleneck along the migration path. Based on the results, we generate an energy model to predict configurational and migration energy in subsequent Kinetic Monte Carlo simulations. We show that sodium ions are trapped due to introduced silicon ions but percolate in the system for ≥2.0, which greatly increases the ionic conductivity.
由于具有高钠离子传导率,钠超离子导体(NASICONs)是固态电池中最有前途的固体电解质候选材料之一,因此近年来受到了广泛关注。先前的实验和计算研究表明,对于x = 2 - 2.5的NaZrSiPO,其钠离子传导率极佳。为了阐明高取代水平下的传导率最大值,我们使用密度泛函理论研究了阳离子环境对钠离子位点能量以及相关迁移的影响。结果表明,位点能量强烈依赖于静电效应。此外,由于钠离子库仑排斥力的增加以及迁移路径上瓶颈的打开,钠离子和硅离子比例的增加增强了相关迁移。基于这些结果,我们生成了一个能量模型,以预测后续动力学蒙特卡罗模拟中的构型能量和迁移能量。我们表明,引入的硅离子会使钠离子被困住,但当x≥2.0时,钠离子会在系统中渗流,这极大地提高了离子传导率。