Suppr超能文献

基于机器学习的上皮-间质转化相关长链非编码RNA特征筛选揭示低级别胶质瘤预后及肿瘤微环境并预测抗肿瘤治疗反应

Machine learning-based screening of an epithelial-mesenchymal transition-related long non-coding RNA signature reveals lower-grade glioma prognosis and the tumor microenvironment and predicts antitumor therapy response.

作者信息

Wang Nan, Gao Xin, Ji Hang, Ma Shuai, Wu Jiasheng, Dong Jiawei, Wang Fang, Zhao Hongtao, Liu Zhihui, Yan Xiuwei, Li Bo, Du Jianyang, Zhang Jiheng, Hu Shaoshan

机构信息

Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People's Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China.

Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.

出版信息

Front Mol Biosci. 2022 Aug 26;9:942966. doi: 10.3389/fmolb.2022.942966. eCollection 2022.

Abstract

Epithelial-mesenchymal transition (EMT) confers high invasive and migratory capacity to cancer cells, which limits the effectiveness of tumor therapy. Long non-coding RNAs (lncRNAs) can regulate the dynamic process of EMT at different levels through various complex regulatory networks. We aimed to comprehensively analyze and screen EMT-related lncRNAs to characterize lower-grade glioma (LGG) tumor biology and provide new ideas for current therapeutic approaches. We retrieved 1065 LGG samples from the Cancer Genome Atlas and Chinese Glioma Genome Atlas by machine learning algorithms, identified three hub lncRNAs including CRNDE, LINC00665, and NEAT1, and established an EMT-related lncRNA signature (EMTrLS). This novel signature had strong prognostic value and potential clinical significance. EMTrLS described LGG genomic alterations and clinical features including gene mutations, tumor mutational burden, World Health Organization (WHO) grade, IDH status, and 1p/19q status. Notably, stratified analysis revealed activation of malignancy-related and metabolic pathways in the EMTrLS-high cohort. Moreover, the population with increased EMTrLS scores had increased cells with immune killing function. However, this antitumor immune function may be suppressed by increased Tregs and macrophages. Meanwhile, the relatively high expression of immune checkpoints explained the immunosuppressive state of patients with high EMTrLS scores. Importantly, we validated this result by quantifying the course of antitumor immunity. In particular, EMTrLS stratification enabled assessment of the responsiveness of LGG to chemotherapeutic drug efficacy and PD1 blockade. In conclusion, our findings complement the foundation of molecular studies of LGG, provide valuable insight into our understanding of EMT-related lncRNAs, and offer new strategies for LGG therapy.

摘要

上皮-间质转化(EMT)赋予癌细胞高侵袭和迁移能力,这限制了肿瘤治疗的效果。长链非编码RNA(lncRNAs)可通过各种复杂调控网络在不同水平调节EMT的动态过程。我们旨在全面分析和筛选与EMT相关的lncRNAs,以表征低级别胶质瘤(LGG)的肿瘤生物学特性,并为当前治疗方法提供新思路。我们通过机器学习算法从癌症基因组图谱和中国胶质瘤基因组图谱中检索了1065个LGG样本,鉴定出包括CRNDE、LINC00665和NEAT1在内的三个枢纽lncRNAs,并建立了一种与EMT相关的lncRNA特征(EMTrLS)。这种新特征具有很强的预后价值和潜在临床意义。EMTrLS描述了LGG的基因组改变和临床特征,包括基因突变、肿瘤突变负荷、世界卫生组织(WHO)分级、异柠檬酸脱氢酶(IDH)状态和1p/19q状态。值得注意的是,分层分析显示EMTrLS高分组中恶性相关和代谢途径被激活。此外,EMTrLS评分增加的人群中具有免疫杀伤功能的细胞增多。然而,这种抗肿瘤免疫功能可能会被增加的调节性T细胞(Tregs)和巨噬细胞抑制。同时,免疫检查点的相对高表达解释了EMTrLS高评分患者的免疫抑制状态。重要的是,我们通过量化抗肿瘤免疫过程验证了这一结果。特别是,EMTrLS分层能够评估LGG对化疗药物疗效和程序性死亡蛋白1(PD1)阻断的反应性。总之,我们的研究结果补充了LGG分子研究的基础,为我们理解与EMT相关的lncRNAs提供了有价值的见解,并为LGG治疗提供了新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/708e/9459009/7d216753afbe/fmolb-09-942966-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验