Suppr超能文献

基于线性泄漏积分发放神经元模型的脉冲神经网络及其与深度神经网络的映射关系。

Linear leaky-integrate-and-fire neuron model based spiking neural networks and its mapping relationship to deep neural networks.

作者信息

Lu Sijia, Xu Feng

机构信息

The Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai, China.

出版信息

Front Neurosci. 2022 Aug 24;16:857513. doi: 10.3389/fnins.2022.857513. eCollection 2022.

Abstract

Spiking neural networks (SNNs) are brain-inspired machine learning algorithms with merits such as biological plausibility and unsupervised learning capability. Previous works have shown that converting Artificial Neural Networks (ANNs) into SNNs is a practical and efficient approach for implementing an SNN. However, the basic principle and theoretical groundwork are lacking for training a non-accuracy-loss SNN. This paper establishes a precise mathematical mapping between the biological parameters of the Linear Leaky-Integrate-and-Fire model (LIF)/SNNs and the parameters of ReLU-AN/Deep Neural Networks (DNNs). Such mapping relationship is analytically proven under certain conditions and demonstrated by simulation and real data experiments. It can serve as the theoretical basis for the potential combination of the respective merits of the two categories of neural networks.

摘要

脉冲神经网络(SNNs)是受大脑启发的机器学习算法,具有生物合理性和无监督学习能力等优点。先前的研究表明,将人工神经网络(ANNs)转换为SNNs是实现SNN的一种实用且有效的方法。然而,训练非精度损失SNN缺乏基本原理和理论基础。本文在线性泄漏积分发放模型(LIF)/SNN的生物学参数与ReLU-AN/深度神经网络(DNNs)的参数之间建立了精确的数学映射。这种映射关系在一定条件下得到了分析证明,并通过仿真和实际数据实验进行了验证。它可以作为两类神经网络各自优点潜在结合的理论基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c73/9448910/9f1ef1b84af7/fnins-16-857513-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验