Microsystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612AJ, Eindhoven, The Netherlands.
Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
Nat Commun. 2024 Apr 3;15(1):2868. doi: 10.1038/s41467-024-47226-3.
Signal communication mechanisms within the human body rely on the transmission and modulation of action potentials. Replicating the interdependent functions of receptors, neurons and synapses with organic artificial neurons and biohybrid synapses is an essential first step towards merging neuromorphic circuits and biological systems, crucial for computing at the biological interface. However, most organic neuromorphic systems are based on simple circuits which exhibit limited adaptability to both external and internal biological cues, and are restricted to emulate only specific the functions of an individual neuron/synapse. Here, we present a modular neuromorphic system which combines organic spiking neurons and biohybrid synapses to replicate a neural pathway. The spiking neuron mimics the sensory coding function of afferent neurons from light stimuli, while the neuromodulatory activity of interneurons is emulated by neurotransmitters-mediated biohybrid synapses. Combining these functions, we create a modular connection between multiple neurons to establish a pre-processing retinal pathway primitive.
人体内的信号通讯机制依赖于动作电位的传输和调制。通过使用有机人工神经元和生物混合突触来复制受体、神经元和突触的相互依存的功能,是融合神经形态电路和生物系统的重要的第一步,对于生物界面的计算至关重要。然而,大多数有机神经形态系统都是基于简单的电路,这些电路对外界和内部生物信号的适应能力有限,并且只能模拟单个神经元/突触的特定功能。在这里,我们提出了一种模块化的神经形态系统,该系统结合了有机尖峰神经元和生物混合突触来复制神经网络通路。尖峰神经元模拟了来自光刺激的传入神经元的感觉编码功能,而神经递质介导的生物混合突触模拟了中间神经元的神经调节活动。通过结合这些功能,我们在多个神经元之间创建了一个模块化的连接,以建立一个预处理的视网膜通路基元。