The School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
CERCO UMR 5549, CNRS-Université de Toulouse 3, F-31300, France.
Neural Netw. 2018 Sep;105:294-303. doi: 10.1016/j.neunet.2018.05.018. Epub 2018 Jun 1.
Although representation learning methods developed within the framework of traditional neural networks are relatively mature, developing a spiking representation model remains a challenging problem. This paper proposes an event-based method to train a feedforward spiking neural network (SNN) layer for extracting visual features. The method introduces a novel spike-timing-dependent plasticity (STDP) learning rule and a threshold adjustment rule both derived from a vector quantization-like objective function subject to a sparsity constraint. The STDP rule is obtained by the gradient of a vector quantization criterion that is converted to spike-based, spatio-temporally local update rules in a spiking network of leaky, integrate-and-fire (LIF) neurons. Independence and sparsity of the model are achieved by the threshold adjustment rule and by a softmax function implementing inhibition in the representation layer consisting of WTA-thresholded spiking neurons. Together, these mechanisms implement a form of spike-based, competitive learning. Two sets of experiments are performed on the MNIST and natural image datasets. The results demonstrate a sparse spiking visual representation model with low reconstruction loss comparable with state-of-the-art visual coding approaches, yet our rule is local in both time and space, thus biologically plausible and hardware friendly.
虽然基于传统神经网络框架开发的表示学习方法已经相对成熟,但开发尖峰表示模型仍然是一个具有挑战性的问题。本文提出了一种基于事件的方法,用于训练用于提取视觉特征的前馈尖峰神经网络 (SNN) 层。该方法引入了一种新颖的基于尖峰的时依赖可塑性 (STDP) 学习规则和一种阈值调整规则,这两个规则都源自一个类似于矢量量化的目标函数,受到稀疏性约束。STDP 规则是通过向量量化标准的梯度获得的,该梯度转换为在具有漏电流和积分-触发 (LIF) 神经元的尖峰网络中的基于尖峰的、时空局部更新规则。通过阈值调整规则和在由 WTA 阈值化尖峰神经元组成的表示层中实现抑制的 softmax 函数,实现了模型的独立性和稀疏性。这些机制共同实现了一种基于尖峰的竞争学习形式。在 MNIST 和自然图像数据集上进行了两组实验。结果表明,与最先进的视觉编码方法相比,该模型具有低重建损失的稀疏尖峰视觉表示模型,但其规则在时间和空间上都是局部的,因此具有生物合理性和硬件友好性。