Suppr超能文献

通过提取多模态特征并运用机器学习技术来检测充血性心力衰竭。

Detecting Congestive Heart Failure by Extracting Multimodal Features and Employing Machine Learning Techniques.

机构信息

Department of Computer Science & IT, The University of Azad Jammu and Kashmir, City Campus, 13100 Muzaffarabad, Azad Kashmir, Pakistan.

College of Computer Sciences and Engineering, University of Jeddah, Jeddah 21959, Saudi Arabia.

出版信息

Biomed Res Int. 2020 Feb 18;2020:4281243. doi: 10.1155/2020/4281243. eCollection 2020.

Abstract

The adaptability of heart to external and internal stimuli is reflected by the heart rate variability (HRV). Reduced HRV can be a predictor of negative cardiovascular outcomes. Based on the nonlinear, nonstationary, and highly complex dynamics of the controlling mechanism of the cardiovascular system, linear HRV measures have limited capability to accurately analyze the underlying dynamics. In this study, we propose an automated system to analyze HRV signals by extracting multimodal features to capture temporal, spectral, and complex dynamics. Robust machine learning techniques, such as support vector machine (SVM) with its kernel (linear, Gaussian, radial base function, and polynomial), decision tree (DT), k-nearest neighbor (KNN), and ensemble classifiers, were employed to evaluate the detection performance. Performance was evaluated in terms of specificity, sensitivity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). The highest performance was obtained using SVM linear kernel (TA = 93.1%, AUC = 0.97, 95% CI [lower bound = 0.04, upper bound = 0.89]), followed by ensemble subspace discriminant (TA = 91.4%, AUC = 0.96, 95% CI [lower bound 0.07, upper bound = 0.81]) and SVM medium Gaussian kernel (TA = 90.5%, AUC = 0.95, 95% CI [lower bound = 0.07, upper bound = 0.86]). The results reveal that the proposed approach can provide an effective and computationally efficient tool for automatic detection of congestive heart failure patients.

摘要

心脏对外界和内部刺激的适应能力反映在心率变异性(HRV)上。HRV 降低可能是心血管不良结局的预测指标。基于心血管系统控制机制的非线性、非平稳和高度复杂的动力学,线性 HRV 测量方法的能力有限,难以准确分析潜在的动力学。在这项研究中,我们提出了一种自动分析 HRV 信号的系统,通过提取多模态特征来捕捉时间、频谱和复杂动力学。稳健的机器学习技术,如支持向量机(SVM)及其核(线性、高斯、径向基函数和多项式)、决策树(DT)、k-最近邻(KNN)和集成分类器,被用于评估检测性能。性能评估指标包括特异性、敏感性、阳性预测值(PPV)、阴性预测值(NPV)和接收器操作特征曲线下的面积(AUC)。使用 SVM 线性核(TA=93.1%,AUC=0.97,95%CI [下限=0.04,上限=0.89])获得了最高的性能,其次是集成子空间判别(TA=91.4%,AUC=0.96,95%CI [下限 0.07,上限=0.81])和 SVM 中高斯核(TA=90.5%,AUC=0.95,95%CI [下限=0.07,上限=0.86])。结果表明,所提出的方法可以为充血性心力衰竭患者的自动检测提供一种有效且计算效率高的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cbe/7049402/d2ad66dcbb63/BMRI2020-4281243.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验