文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Hope for bone regeneration: The versatility of iron oxide nanoparticles.

作者信息

Wang Nan, Xie Yimin, Xi Zhipeng, Mi Zehua, Deng Rongrong, Liu Xiyu, Kang Ran, Liu Xin

机构信息

Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.

Hospital for Skin Diseases, Institute of Dermatology Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.

出版信息

Front Bioeng Biotechnol. 2022 Aug 25;10:937803. doi: 10.3389/fbioe.2022.937803. eCollection 2022.


DOI:10.3389/fbioe.2022.937803
PMID:36091431
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9452849/
Abstract

Although bone tissue has the ability to heal itself, beyond a certain point, bone defects cannot rebuild themselves, and the challenge is how to promote bone tissue regeneration. Iron oxide nanoparticles (IONPs) are a magnetic material because of their excellent properties, which enable them to play an active role in bone regeneration. This paper reviews the application of IONPs in bone tissue regeneration in recent years, and outlines the mechanisms of IONPs in bone tissue regeneration in detail based on the physicochemical properties, structural characteristics and safety of IONPs. In addition, a bibliometric approach has been used to analyze the hot spots and trends in the field in order to identify future directions. The results demonstrate that IONPs are increasingly being investigated in bone regeneration, from the initial use as magnetic resonance imaging (MRI) contrast agents to later drug delivery vehicles, cell labeling, and now in combination with stem cells (SCs) composite scaffolds. In conclusion, based on the current research and development trends, it is more inclined to be used in bone tissue engineering, scaffolds, and composite scaffolds.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/023f559dac08/fbioe-10-937803-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/3cff850f58a8/fbioe-10-937803-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/ad0d5dc8b850/fbioe-10-937803-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/f5dd18322348/fbioe-10-937803-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/0b9ded45d338/fbioe-10-937803-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/f18ffe4432c9/fbioe-10-937803-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/669ebff242f1/fbioe-10-937803-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/4fdc139db267/fbioe-10-937803-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/afa6a82737e7/fbioe-10-937803-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/6e98500ce99b/fbioe-10-937803-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/aa7a164e6f36/fbioe-10-937803-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/7d77189a64a5/fbioe-10-937803-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/859caf6cb56d/fbioe-10-937803-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/64aab2bea416/fbioe-10-937803-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/954c77ad9874/fbioe-10-937803-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/023f559dac08/fbioe-10-937803-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/3cff850f58a8/fbioe-10-937803-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/ad0d5dc8b850/fbioe-10-937803-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/f5dd18322348/fbioe-10-937803-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/0b9ded45d338/fbioe-10-937803-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/f18ffe4432c9/fbioe-10-937803-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/669ebff242f1/fbioe-10-937803-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/4fdc139db267/fbioe-10-937803-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/afa6a82737e7/fbioe-10-937803-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/6e98500ce99b/fbioe-10-937803-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/aa7a164e6f36/fbioe-10-937803-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/7d77189a64a5/fbioe-10-937803-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/859caf6cb56d/fbioe-10-937803-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/64aab2bea416/fbioe-10-937803-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/954c77ad9874/fbioe-10-937803-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56b1/9452849/023f559dac08/fbioe-10-937803-g015.jpg

相似文献

[1]
Hope for bone regeneration: The versatility of iron oxide nanoparticles.

Front Bioeng Biotechnol. 2022-8-25

[2]
Adaptive Materials Based on Iron Oxide Nanoparticles for Bone Regeneration.

Chemphyschem. 2018-8-17

[3]
Osteogenesis of Iron Oxide Nanoparticles-Labeled Human Precartilaginous Stem Cells in Interpenetrating Network Printable Hydrogel.

Front Bioeng Biotechnol. 2022-4-29

[4]
Antibacterial and angiogenic potential of iron oxide nanoparticles-stabilized acrylate-based scaffolds for bone tissue engineering applications.

Colloids Surf B Biointerfaces. 2023-11

[5]
1-2 ​T static magnetic field combined with Ferumoxytol prevent unloading-induced bone loss by regulating iron metabolism in osteoclastogenesis.

J Orthop Translat. 2022-11-3

[6]
Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells.

Artif Cells Nanomed Biotechnol. 2018-1-21

[7]
Superparamagnetic core-shell electrospun scaffolds with sustained release of IONPs facilitating and bone regeneration.

J Mater Chem B. 2021-11-10

[8]
Regeneration of hyaline cartilage in osteochondral lesion model using L-lysine magnetic nanoparticles labeled mesenchymal stem cells and their in vivo imaging.

J Tissue Eng Regen Med. 2020-11

[9]
Magnetic fibrin nanofiber hydrogel delivering iron oxide magnetic nanoparticles promotes peripheral nerve regeneration.

Regen Biomater. 2024-6-20

[10]
Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering.

Nanomaterials (Basel). 2021-9-8

引用本文的文献

[1]
Enhanced osteogenicity of adipose tissue-derived stem cells induced by phytochemically synthesized FeO/Lanthanum/SiO nanocomposite using ulmus minor Mll. extract.

J Biol Eng. 2025-9-1

[2]
Initial therapeutic evidence of a borosilicate bioactive glass (BSG) and FeO magnetic nanoparticle scaffold on implant-associated bone infection.

Bioact Mater. 2024-6-8

[3]
The Histological and Biochemical Assessment of Monoiodoacetate-Induced Knee Osteoarthritis in a Rat Model Treated with Salicylic Acid-Iron Oxide Nanoparticles.

Biology (Basel). 2024-5-10

[4]
Magnetic Hydroxyapatite Nanoparticles in Regenerative Medicine and Nanomedicine.

Int J Mol Sci. 2024-2-28

[5]
In Vitro Bone Differentiation of 3D Microsphere from Dental Pulp-Mesenchymal Stem Cells.

Bioengineering (Basel). 2023-5-10

本文引用的文献

[1]
Enhanced tissue regeneration through immunomodulation of angiogenesis and osteogenesis with a multifaceted nanohybrid modified bioactive scaffold.

Bioact Mater. 2022-6-2

[2]
Muse cells decrease the neuroinflammatory response by modulating the proportion of M1 and M2 microglia .

Neural Regen Res. 2023-1

[3]
Exosomes derived from magnetically actuated bone mesenchymal stem cells promote tendon-bone healing through the miR-21-5p/SMAD7 pathway.

Mater Today Bio. 2022-6-11

[4]
Magnetic bioactive glass nano-heterostructures: a deeper insight into magnetic hyperthermia properties in the scope of bone cancer treatment.

Biomater Sci. 2022-7-12

[5]
The optimization of ligature/bone defect-induced periodontitis model in rats.

Odontology. 2022-10

[6]
Osteogenesis of Iron Oxide Nanoparticles-Labeled Human Precartilaginous Stem Cells in Interpenetrating Network Printable Hydrogel.

Front Bioeng Biotechnol. 2022-4-29

[7]
Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review.

J Biomater Sci Polym Ed. 2022-9

[8]
A Confinement-Driven Nucleation Mechanism of Metal Oxide Nanoparticles Obtained via Thermal Decomposition in Organic Media.

Small. 2022-5

[9]
The horizon of bone organoid: A perspective on construction and application.

Bioact Mater. 2022-2-5

[10]
Ultrasmall iron oxide nanoparticles cause significant toxicity by specifically inducing acute oxidative stress to multiple organs.

Part Fibre Toxicol. 2022-3-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索