文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

超小氧化铁纳米颗粒通过特异性诱导多个器官的急性氧化应激而引起显著毒性。

Ultrasmall iron oxide nanoparticles cause significant toxicity by specifically inducing acute oxidative stress to multiple organs.

机构信息

Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.

School of Pharmaceutical Science, Jiangsu University, 308 Xuefu Road, Zhenjiang, 212013, China.

出版信息

Part Fibre Toxicol. 2022 Mar 29;19(1):24. doi: 10.1186/s12989-022-00465-y.


DOI:10.1186/s12989-022-00465-y
PMID:35351185
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8962100/
Abstract

BACKGROUND: Iron oxide nanoparticles have been approved by food and drug administration for clinical application as magnetic resonance imaging (MRI) and are considered to be a biocompatible material. Large iron oxide nanoparticles are usually used as transversal (T) contrast agents to exhibit dark contrast in MRI. In contrast, ultrasmall iron oxide nanoparticles (USPIONs) (several nanometers) showed remarkable advantage in longitudinal (T)-weighted MRI due to the brighten effect. The study of the toxicity mainly focuses on particles with size of tens to hundreds of nanometers, while little is known about the toxicity of USPIONs. RESULTS: We fabricated FeO nanoparticles with diameters of 2.3, 4.2, and 9.3 nm and evaluated their toxicity in mice by intravenous injection. The results indicate that ultrasmall iron oxide nanoparticles with small size (2.3 and 4.2 nm) were highly toxic and were lethal at a dosage of 100 mg/kg. In contrast, no obvious toxicity was observed for iron oxide nanoparticles with size of 9.3 nm. The toxicity of small nanoparticles (2.3 and 4.2 nm) could be reduced when the total dose was split into 4 doses with each interval for 5 min. To study the toxicology, we synthesized different-sized SiO and gold nanoparticles. No significant toxicity was observed for ultrasmall SiO and gold nanoparticles in the mice. Hence, the toxicity of the ultrasmall FeO nanoparticles should be attributed to both the iron element and size. In the in vitro experiments, all the ultrasmall nanoparticles (< 5 nm) of FeO, SiO, and gold induced the generation of the reactive oxygen species (ROS) efficiently, while no obvious ROS was observed in larger nanoparticles groups. However, the ·OH was only detected in FeO group instead of SiO and gold groups. After intravenous injection, significantly elevated ·OH level was observed in heart, serum, and multiple organs. Among these organs, heart showed highest ·OH level due to the high distribution of ultrasmall FeO nanoparticles, leading to the acute cardiac failure and death. CONCLUSION: Ultrasmall FeO nanoparticles (2.3 and 4.2 nm) showed high toxicity in vivo due to the distinctive capability in inducing the generation of ·OH in multiple organs, especially in heart. The toxicity was related to both the iron element and size. These findings provide novel insight into the toxicology of ultrasmall FeO nanoparticles, and also highlight the need of comprehensive evaluation for their clinic application.

摘要

背景:氧化铁纳米颗粒已被食品和药物管理局批准用于临床应用,作为磁共振成像(MRI)的造影剂,并被认为是一种生物相容性材料。大的氧化铁纳米颗粒通常用作横向(T)对比剂,在 MRI 中表现为暗对比。相比之下,超小氧化铁纳米颗粒(USPIONs)(数纳米)由于增亮效应,在纵向(T)加权 MRI 中具有显著优势。毒性研究主要集中在几十到几百纳米大小的颗粒上,而对于 USPIONs 的毒性知之甚少。

结果:我们制备了直径为 2.3、4.2 和 9.3nm 的 FeO 纳米颗粒,并通过静脉注射在小鼠体内评估了它们的毒性。结果表明,小尺寸(2.3 和 4.2nm)的超小氧化铁纳米颗粒具有高度毒性,在 100mg/kg 的剂量下是致命的。相比之下,尺寸为 9.3nm 的氧化铁纳米颗粒没有明显的毒性。当总剂量分为 4 份,每份间隔 5 分钟时,小纳米颗粒(2.3 和 4.2nm)的毒性可以降低。为了研究毒理学,我们合成了不同尺寸的 SiO 和金纳米颗粒。在小鼠中,没有观察到超小 SiO 和金纳米颗粒的显著毒性。因此,超小 FeO 纳米颗粒的毒性应该归因于铁元素和尺寸。在体外实验中,所有小于 5nm 的超小 FeO、SiO 和金纳米颗粒都能有效地诱导活性氧(ROS)的产生,而较大纳米颗粒组则没有明显的 ROS 产生。然而,只有在 FeO 组中检测到·OH,而在 SiO 和金组中则没有。静脉注射后,在心脏、血清和多个器官中观察到显著升高的·OH 水平。在这些器官中,由于超小 FeO 纳米颗粒的高分布,心脏表现出最高的·OH 水平,导致急性心力衰竭和死亡。

结论:体内超小 FeO 纳米颗粒(2.3 和 4.2nm)由于在多个器官中诱导·OH 生成的独特能力,表现出高毒性,特别是在心脏中。这种毒性与铁元素和尺寸有关。这些发现为超小 FeO 纳米颗粒的毒理学提供了新的见解,也强调了对其临床应用进行综合评估的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e79/8962100/73a971fe8ea8/12989_2022_465_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e79/8962100/1e54779cf846/12989_2022_465_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e79/8962100/75291a5f85a0/12989_2022_465_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e79/8962100/abcbc0a193da/12989_2022_465_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e79/8962100/635fed8217a3/12989_2022_465_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e79/8962100/f7251fb80a55/12989_2022_465_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e79/8962100/d7d978558071/12989_2022_465_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e79/8962100/73a971fe8ea8/12989_2022_465_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e79/8962100/1e54779cf846/12989_2022_465_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e79/8962100/75291a5f85a0/12989_2022_465_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e79/8962100/abcbc0a193da/12989_2022_465_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e79/8962100/635fed8217a3/12989_2022_465_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e79/8962100/f7251fb80a55/12989_2022_465_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e79/8962100/d7d978558071/12989_2022_465_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e79/8962100/73a971fe8ea8/12989_2022_465_Fig7_HTML.jpg

相似文献

[1]
Ultrasmall iron oxide nanoparticles cause significant toxicity by specifically inducing acute oxidative stress to multiple organs.

Part Fibre Toxicol. 2022-3-29

[2]
Comparative toxicity assessment of individual, binary and ternary mixtures of SiO, FeO, and ZnO nanoparticles in freshwater microalgae, Scenedesmus obliquus: Exploring the role of dissolved ions.

Comp Biochem Physiol C Toxicol Pharmacol. 2023-11

[3]
Assessment of Gold-Coated Iron Oxide Nanoparticles as Negative T2 Contrast Agent in Small Animal MRI Studies.

Int J Nanomedicine. 2020-7-7

[4]
Redox-Sensitive Clustered Ultrasmall Iron Oxide Nanoparticles for Switchable T/T-Weighted Magnetic Resonance Imaging Applications.

Bioconjug Chem. 2020-2-19

[5]
Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging.

Phys Chem Chem Phys. 2012-1-25

[6]
Functionalized Ultrasmall Iron Oxide Nanoparticles for -Weighted Magnetic Resonance Imaging of Tumor Hypoxia.

Molecules. 2022-10-15

[7]
Biocompatible Peptide-Coated Ultrasmall Superparamagnetic Iron Oxide Nanoparticles for In Vivo Contrast-Enhanced Magnetic Resonance Imaging.

ACS Nano. 2018-7-11

[8]
Conjugation of iron oxide nanoparticles with RGD-modified dendrimers for targeted tumor MR imaging.

ACS Appl Mater Interfaces. 2015-3-11

[9]
Effects of iron oxide nanoparticles on biological responses and MR imaging properties in human mammary healthy and breast cancer epithelial cells.

J Biomed Mater Res B Appl Biomater. 2016-7

[10]
Appropriate Size of FeO Nanoparticles for Cancer Therapy by Ferroptosis.

ACS Appl Bio Mater. 2022-4-18

引用本文的文献

[1]
Analyzing Molecular Determinants of Nanodrugs' Cytotoxic Effects.

Int J Mol Sci. 2025-7-11

[2]
Cardiovascular Toxicity of Metal-Based Nanoparticles.

Int J Mol Sci. 2025-6-17

[3]
Synthesis of ε-FeN Particles for Magnetic Hyperthermia.

J Funct Biomater. 2025-6-1

[4]
Rational Design of Safer Inorganic Nanoparticles via Mechanistic Modeling-Informed Machine Learning.

ACS Nano. 2025-6-17

[5]
Controllable nickel ions release from deferoxamine mesylate-triggered nickel-iron layered double hydroxide for eliciting apoptotic cell death in prostate cancer.

J Nanobiotechnology. 2025-5-30

[6]
Understanding the Mechanism of Cardiotoxicity Induced by Nanomaterials: A Comprehensive Review.

Small Sci. 2025-2-20

[7]
Antimicrobial Coatings Based on Hybrid Iron Oxide Nanoparticles.

Nanomaterials (Basel). 2025-4-22

[8]
Mechanical Forces Guide Axon Growth through the Nigrostriatal Pathway in an Organotypic Model.

Adv Sci (Weinh). 2025-8

[9]
Preparation of Ni-Mn ferrites magnetic nanoparticles through the ethanol solution combustion-calcination process for the adsorption of methyl blue.

PLoS One. 2025-5-9

[10]
Recent progress in ROS-responsive biomaterials for the diagnosis and treatment of cardiovascular diseases.

Theranostics. 2025-4-11

本文引用的文献

[1]
Magnetic liposomes for light-sensitive drug delivery and combined photothermal-chemotherapy of tumors.

J Mater Chem B. 2019-1-25

[2]
Cell-Penetrating Nanoparticles Activate the Inflammasome to Enhance Antibody Production by Targeting Microtubule-Associated Protein 1-Light Chain 3 for Degradation.

ACS Nano. 2020-3-24

[3]
Size- and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles.

Int J Nanomedicine. 2019-8-28

[4]
Synthesis of CaO Nanocrystals and Their Spherical Aggregates with Uniform Sizes for Use as a Biodegradable Bacteriostatic Agent.

Small. 2019-7-22

[5]
FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels.

Nat Nanotechnol. 2019-3-25

[6]
Magnetic thermosensitive micelles with upper critical solution temperature for NIR triggered drug release.

Biomater Sci. 2019-4-23

[7]
Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation.

ACS Nano. 2019-1-18

[8]
Recent insights in magnetic hyperthermia: From the "hot-spot" effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids.

Adv Drug Deliv Rev. 2018-11-7

[9]
Non-Functionalized Ultrasmall Silica Nanoparticles Directly and Size-Selectively Activate T Cells.

ACS Nano. 2018-10-29

[10]
Self-Supplying O through the Catalase-Like Activity of Gold Nanoclusters for Photodynamic Therapy against Hypoxic Cancer Cells.

Small. 2017-5-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索