Suppr超能文献

细胞的几何约束对表观遗传因子的核结构、力学和核质穿梭的调控。

Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints.

机构信息

Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104.

Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104.

出版信息

Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13200-13209. doi: 10.1073/pnas.1902035116. Epub 2019 Jun 17.

Abstract

Cells sense mechanical signals from their microenvironment and transduce them to the nucleus to regulate gene expression programs. To elucidate the physical mechanisms involved in this regulation, we developed an active 3D chemomechanical model to describe the three-way feedback between the adhesions, the cytoskeleton, and the nucleus. The model shows local tensile stresses generated at the interface of the cell and the extracellular matrix regulate the properties of the nucleus, including nuclear morphology, levels of lamin A,C, and histone deacetylation, as these tensile stresses 1) are transmitted to the nucleus through cytoskeletal physical links and 2) trigger an actomyosin-dependent shuttling of epigenetic factors. We then show how cell geometric constraints affect the local tensile stresses and subsequently the three-way feedback and induce cytoskeleton-mediated alterations in the properties of the nucleus such as nuclear lamina softening, chromatin stiffening, nuclear lamina invaginations, increase in nuclear height, and shrinkage of nuclear volume. We predict a phase diagram that describes how the disruption of cytoskeletal components impacts the feedback and subsequently induce contractility-dependent alterations in the properties of the nucleus. Our simulations show that these changes in contractility levels can be also used as predictors of nucleocytoplasmic shuttling of transcription factors and the level of chromatin condensation. The predictions are experimentally validated by studying the properties of nuclei of fibroblasts on micropatterned substrates with different shapes and areas.

摘要

细胞感知来自其微环境的机械信号,并将其转导至细胞核以调节基因表达程序。为了阐明这种调控涉及的物理机制,我们开发了一个主动的 3D 化学机械模型来描述细胞与细胞外基质之间的黏附、细胞骨架和细胞核之间的三向反馈。该模型表明,细胞与细胞外基质界面处产生的局部拉伸应力调节核的性质,包括核形态、核纤层 A、C 的水平和组蛋白去乙酰化,因为这些拉伸应力 1)通过细胞骨架物理连接传递到细胞核,2)触发肌动球蛋白依赖性的表观遗传因子穿梭。然后,我们展示了细胞的几何约束如何影响局部拉伸应力,进而影响三向反馈,并诱导核的性质发生细胞骨架介导的改变,如核纤层软化、染色质变硬、核纤层内陷、核高度增加和核体积缩小。我们预测了一个相图,描述了细胞骨架成分的破坏如何影响反馈,进而诱导核的收缩依赖性改变。我们的模拟表明,这些收缩水平的变化也可以作为转录因子核质穿梭和染色质浓缩水平的预测指标。通过研究具有不同形状和面积的微图案化基底上成纤维细胞的核性质,对预测进行了实验验证。

相似文献

5
Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes.细胞骨架预应力调节心肌细胞的核形状和硬度。
Exp Biol Med (Maywood). 2015 Nov;240(11):1543-54. doi: 10.1177/1535370215583799. Epub 2015 Apr 23.
8
Mechanical regulation of nuclear structure and function.机械调节核结构与功能。
Annu Rev Biomed Eng. 2012;14:431-55. doi: 10.1146/annurev-bioeng-071910-124638. Epub 2012 May 22.

引用本文的文献

3
Application of biomechanics in tumor epigenetic research.生物力学在肿瘤表观遗传学研究中的应用。
Mechanobiol Med. 2024 Aug 22;2(4):100093. doi: 10.1016/j.mbm.2024.100093. eCollection 2024 Dec.

本文引用的文献

9
Cell geometry dictates TNFα-induced genome response.细胞几何形状决定 TNFα 诱导的基因组反应。
Proc Natl Acad Sci U S A. 2017 May 16;114(20):E3882-E3891. doi: 10.1073/pnas.1618007114. Epub 2017 May 1.
10
The molecular architecture of lamins in somatic cells.体细胞中层粘连蛋白的分子结构。
Nature. 2017 Mar 9;543(7644):261-264. doi: 10.1038/nature21382. Epub 2017 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验