文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度联邦自适应:一种具有联邦学习的自适应住宅负荷预测方法。

Deep Federated Adaptation: An Adaptative Residential Load Forecasting Approach with Federated Learning.

机构信息

Electronic Information School, Wuhan University, Wuhan 430072, China.

出版信息

Sensors (Basel). 2022 Apr 24;22(9):3264. doi: 10.3390/s22093264.


DOI:10.3390/s22093264
PMID:35590953
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9104819/
Abstract

Residential-level short-term load forecasting (STLF) is significant for power system operation. Data-driven forecasting models, especially machine-learning-based models, are sensitive to the amount of data. However, privacy and security concerns raised by supervision departments and users limit the data for sharing. Meanwhile, the limited data from the newly built houses are not sufficient to support building a powerful model. Another problem is that the data from different houses are in a non-identical and independent distribution (non-IID), which makes the general model fail in predicting accurate load for the specific house. Even though we can build a model corresponding to each house, it costs a large computation time. We first propose a federated transfer learning approach applied in STLF, deep federated adaptation (DFA), to deal with the aforementioned problems. This approach adopts the federated learning architecture to train a global model without undermining privacy, and then the model leverage multiple kernel variant of maximum mean discrepancies (MK-MMD) to fine-tune the global model, which makes the model adapted to the specific house's prediction task. Experimental results on the real residential datasets show that DFA has the best forecasting performance compared with other baseline models and the federated architecture of DFA has a remarkable superiority in computation time. The framework of DFA is extended with alternative transfer learning methods and all of them achieve good performances on STLF.

摘要

住宅短期负荷预测(STLF)对于电力系统运行具有重要意义。数据驱动的预测模型,特别是基于机器学习的模型,对数据量非常敏感。然而,监管部门和用户提出的隐私和安全问题限制了数据的共享。同时,新建房屋的数据有限,不足以支持建立强大的模型。另一个问题是,不同房屋的数据分布是非同分布和独立的(非IID),这使得通用模型无法准确预测特定房屋的负荷。即使我们可以为每个房屋建立一个模型,它也需要大量的计算时间。我们首先提出了一种应用于 STLF 的联邦迁移学习方法,即深度联邦自适应(DFA),以解决上述问题。该方法采用联邦学习架构来训练全局模型,而不会损害隐私,然后使用多个核变异最大均值差异(MK-MMD)来微调全局模型,使模型适应特定房屋的预测任务。在真实住宅数据集上的实验结果表明,DFA 与其他基线模型相比具有最佳的预测性能,并且 DFA 的联邦架构在计算时间方面具有显著优势。DFA 的框架扩展了替代迁移学习方法,它们在 STLF 上都取得了良好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/24b6ad26f455/sensors-22-03264-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/4896dea19147/sensors-22-03264-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/a0bb7ae770bb/sensors-22-03264-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/17720aa42911/sensors-22-03264-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/b4b93d38474e/sensors-22-03264-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/9e2f9770e847/sensors-22-03264-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/d42a271aa21d/sensors-22-03264-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/e930444bc76c/sensors-22-03264-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/d7d7dff6a515/sensors-22-03264-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/24b6ad26f455/sensors-22-03264-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/4896dea19147/sensors-22-03264-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/a0bb7ae770bb/sensors-22-03264-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/17720aa42911/sensors-22-03264-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/b4b93d38474e/sensors-22-03264-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/9e2f9770e847/sensors-22-03264-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/d42a271aa21d/sensors-22-03264-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/e930444bc76c/sensors-22-03264-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/d7d7dff6a515/sensors-22-03264-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/9104819/24b6ad26f455/sensors-22-03264-g009.jpg

相似文献

[1]
Deep Federated Adaptation: An Adaptative Residential Load Forecasting Approach with Federated Learning.

Sensors (Basel). 2022-4-24

[2]
Privacy-Preserving Breast Cancer Classification: A Federated Transfer Learning Approach.

J Imaging Inform Med. 2024-8

[3]
Privacy-preserving household load forecasting based on non-intrusive load monitoring: A federated deep learning approach.

PeerJ Comput Sci. 2022-8-2

[4]
Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results.

Med Image Anal. 2020-10

[5]
Dynamic Asynchronous Anti Poisoning Federated Deep Learning with Blockchain-Based Reputation-Aware Solutions.

Sensors (Basel). 2022-1-17

[6]
Secure and decentralized federated learning framework with non-IID data based on blockchain.

Heliyon. 2024-2-29

[7]
Learning From Others Without Sacrificing Privacy: Simulation Comparing Centralized and Federated Machine Learning on Mobile Health Data.

JMIR Mhealth Uhealth. 2021-3-30

[8]
Privacy-preserving federated machine learning on FAIR health data: A real-world application.

Comput Struct Biotechnol J. 2024-2-17

[9]
Federated personalized random forest for human activity recognition.

Math Biosci Eng. 2022-1

[10]
Ternary Compression for Communication-Efficient Federated Learning.

IEEE Trans Neural Netw Learn Syst. 2022-3

本文引用的文献

[1]
Forecasting Day-Ahead Electricity Metrics with Artificial Neural Networks.

Sensors (Basel). 2022-1-28

[2]
Federated Learning in Edge Computing: A Systematic Survey.

Sensors (Basel). 2022-1-7

[3]
A Real-Time Electrical Load Forecasting in Jordan Using an Enhanced Evolutionary Feedforward Neural Network.

Sensors (Basel). 2021-9-17

[4]
FedMed: A Federated Learning Framework for Language Modeling.

Sensors (Basel). 2020-7-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索