China Telecom Research Institute, Guangzhou, 510000, China.
Sci Rep. 2023 Jan 31;13(1):1724. doi: 10.1038/s41598-023-28974-6.
Federated learning(FL) is a new kind of Artificial Intelligence(AI) aimed at data privacy preservation that builds on decentralizing the training data for the deep learning model. This new technique of data security and privacy sheds light on many critical domains with highly sensitive data, including medical image analysis. Developing a strong, scalable, and precise deep learning model has proven to count on a variety of high-quality data from different centers. However, data holders may not willing to share their data considering the restriction of privacy. In this paper, we approach this challenge with a federated learning paradigm. Specifically, we present a case study on the whole slide image classification problem. At each local client center, a multiple-instance learning classifier is developed to conduct whole slide image classification. We introduce a privacy-preserving federated learning framework based on hyper-network to update the global model. Hyper-network is deployed at the global center that produces the weights of the local network conditioned on its input. In this way, hyper-networks can simultaneously learn a family of the local client networks. Instead of communicating raw data with the local client, only model parameters injected with noise are transferred between the local client and the global model. By using a large scale of whole slide images with only slide-level labels, we mensurated our way on two different whole slide image classification problems. The results demonstrate that our proposed federated learning model based on hyper-network can effectively leverage multi-center data to develop a more accurate model which can be used to classify a whole slide image. Its improvements in terms of over the isolated local centers and the commonly used federated averaging baseline are significant. Code will be available.
联邦学习(FL)是一种新的人工智能(AI)技术,旨在保护数据隐私,其基础是去中心化深度学习模型的训练数据。这种新的数据安全和隐私技术为许多具有高度敏感数据的关键领域提供了启示,包括医学图像分析。开发强大、可扩展和精确的深度学习模型已被证明需要来自不同中心的各种高质量数据。然而,数据持有者可能不愿意共享其数据,因为考虑到隐私的限制。在本文中,我们通过联邦学习范例来解决这个挑战。具体来说,我们提出了一个关于全切片图像分类问题的案例研究。在每个本地客户端中心,开发了一种多实例学习分类器来进行全切片图像分类。我们引入了一种基于超网络的隐私保护联邦学习框架来更新全局模型。超网络部署在全局中心,根据其输入生成本地网络的权重。通过这种方式,超网络可以同时学习一系列本地客户端网络。超网络与本地客户端之间仅传输注入噪声的模型参数,而不是与本地客户端共享原始数据。我们使用具有幻灯片级标签的大规模全切片图像来衡量我们在两个不同的全切片图像分类问题上的方法。结果表明,我们提出的基于超网络的联邦学习模型可以有效地利用多中心数据来开发更准确的模型,该模型可用于分类整个幻灯片图像。它在孤立的本地中心和常用的联邦平均基准方面都有显著的改进。代码将可用。