VanSant Kaitlyn T, Warren Emily L, Geisz John F, Klein Talysa R, Johnston Steve, McMahon William E, Schulte-Huxel Henning, Rienäcker Michael, Peibst Robby, Tamboli Adele C
Physics Department, Colorado School of Mines, Golden, CO 80401, USA.
National Renewable Energy Laboratory, Golden, CO 80401, USA.
iScience. 2022 Aug 19;25(9):104950. doi: 10.1016/j.isci.2022.104950. eCollection 2022 Sep 16.
The pursuit of ever-higher solar cell efficiencies has focused heavily on multijunction technologies. In tandem cells, subcells are typically either contacted via two terminals (2T) or four terminals (4T). Simulations show that the less-common three-terminal (3T) design may be comparable to 4T tandem cells in its compatibility with a range of materials, operating conditions, and methods for subcell integration, yet the 3T design circumvents shading losses of the 4T intermediate conductive layers. This study analyzes the performance of two superstrate 3T III-V-on-Si (III-V//Si) tandem cells: One has slightly greater current contribution from the Si bottom cell (GaInP//Si) and the other has substantially greater current contribution from the GaAs top cell (GaAs//Si). Our results show that both tandem cells exhibit the same efficiency (21.3%), thereby demonstrating that the third terminal allows for flexibility in the selection of the top cell material, similar to the 4T design.
对更高太阳能电池效率的追求主要集中在多结技术上。在串联电池中,子电池通常通过两个端子(2T)或四个端子(4T)进行连接。模拟表明,不太常见的三端子(3T)设计在与一系列材料、工作条件和子电池集成方法的兼容性方面可能与4T串联电池相当,然而3T设计避免了4T中间导电层的遮光损失。本研究分析了两个覆层式3T硅基III-V族(III-V//Si)串联电池的性能:一个硅基底部电池(GaInP//Si)的电流贡献略大,另一个砷化镓顶部电池(GaAs//Si)的电流贡献显著更大。我们的结果表明,这两个串联电池都具有相同的效率(21.3%),从而证明第三端子允许在顶部电池材料的选择上具有灵活性,这与4T设计类似。