Suppr超能文献

周细胞通过胶质母细胞瘤中的CD163/MCAM轴介导巨噬细胞的浸润、迁移和极化。

Pericyte mediates the infiltration, migration, and polarization of macrophages by CD163/MCAM axis in glioblastoma.

作者信息

Zhang Hao, Zhang Nan, Wu Wantao, Wang Zeyu, Dai Ziyu, Liang Xisong, Zhang Liyang, Peng Yun, Luo Peng, Zhang Jian, Liu Zaoqu, Cheng Quan, Liu Zhixiong

机构信息

Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.

National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.

出版信息

iScience. 2022 Aug 10;25(9):104918. doi: 10.1016/j.isci.2022.104918. eCollection 2022 Sep 16.

Abstract

Microenvironment cells (MCs) play a critical role in tumor proliferation, progression, and metastasis. However, it has not been adequately addressed whether MCs could be used as a reliable prognostic marker in glioblastoma (GBM). In the current study, the cell pair (CP) score was constructed in 1137 GBM samples based on the cell pair algorithm and Gaussian finite mixture model (GMM) and was verified in 73 GBM samples from the Xiangya cohort. CP score predicted GBM patients' survival and response to anti-PD-1 treatment with high sensitivity. Macrophage markers CD68 and CD163 were co-expressed with pericyte markers MCAM and MG2. Pericyte could mediate the infiltration, migration, and M2 type polarization of macrophages by MCAM. The CP score was a valuable tool for predicting survival outcomes and guiding immunotherapy for GBM patients. Cell pair pericyte/macrophage and gene pair CD163/MCAM were biologically significant in the tumor microenvironment of GBM.

摘要

微环境细胞(MCs)在肿瘤增殖、进展和转移中起着关键作用。然而,MCs是否可作为胶质母细胞瘤(GBM)可靠的预后标志物尚未得到充分探讨。在本研究中,基于细胞对算法和高斯有限混合模型(GMM)在1137例GBM样本中构建了细胞对(CP)评分,并在来自湘雅队列的73例GBM样本中进行了验证。CP评分以高灵敏度预测GBM患者的生存情况及对抗PD-1治疗的反应。巨噬细胞标志物CD68和CD163与周细胞标志物MCAM和MG2共表达。周细胞可通过MCAM介导巨噬细胞的浸润、迁移和M2型极化。CP评分是预测GBM患者生存结局和指导免疫治疗的有价值工具。细胞对周细胞/巨噬细胞和基因对CD163/MCAM在GBM的肿瘤微环境中具有生物学意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4316/9460550/bf523703269a/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验