Willig Katrin I
Group of Optical Nanoscopy in Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
iScience. 2022 Aug 17;25(9):104961. doi: 10.1016/j.isci.2022.104961. eCollection 2022 Sep 16.
Super-resolution fluorescence microscopy has entered most biological laboratories worldwide and its benefit is undisputable. Its application to brain imaging, for example in living mice, enables the study of sub-cellular structural plasticity and brain function directly in a living mammal. The demands of brain imaging on the different super-resolution microscopy techniques (STED, RESOLFT, SIM, ISM) and labeling strategies are discussed here as well as the challenges of the required cranial window preparation. Applications of super-resolution in the anesthetized mouse brain enlighten the stability and plasticity of synaptic nanostructures. These studies show the potential of super-resolution imaging and justify its application more widely to investigate the role of nanostructures in memory and learning.
超分辨率荧光显微镜已进入全球大多数生物实验室,其优势无可争议。例如,它在活体小鼠脑成像中的应用,能够直接在活体哺乳动物中研究亚细胞结构可塑性和脑功能。本文讨论了脑成像对不同超分辨率显微镜技术(受激发射损耗显微镜、分辨率荧光成像、结构光照明显微镜、迭代组装显微镜)和标记策略的要求,以及所需颅骨视窗制备的挑战。超分辨率在麻醉小鼠脑成像中的应用揭示了突触纳米结构的稳定性和可塑性。这些研究显示了超分辨率成像的潜力,并证明其更广泛地应用于研究纳米结构在记忆和学习中的作用是合理的。