文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于听觉语音的警报系统,通过视频处理数据集检测假车牌。

Auditory Speech Based Alerting System for Detecting Dummy Number Plate via Video Processing Data sets.

机构信息

BMS College of Engineering, Bangalore, Karnataka, India.

Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.

出版信息

Comput Intell Neurosci. 2022 Sep 2;2022:4423744. doi: 10.1155/2022/4423744. eCollection 2022.


DOI:10.1155/2022/4423744
PMID:36093477
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9462979/
Abstract

Spectrum of applications in computer vision use object detection algorithms driven by the power of AI and ML algorithms. State of art detection models like faster Region based convolutional Neural Network (RCNN), Single Shot Multibox Detector (SSD), and You Only Look Once (YOLO) demonstrated a good performance for object detection, but many failed in detecting small objects. In view of this an improved network structure of YOLOv4 is proposed in this paper. This work presents an algorithm for small object detection trained using real-time high-resolution data for porting it on embedded platforms. License plate recognition, which is a small object in a car image, is considered for detection and an auditory speech signal is generated for detecting fake license plates. The proposed network is improved in the following aspects: Training the classifier by using positive data set formed from the core patterns of an image. Training YOLOv4 by the features obtained by decomposing the image into low frequency and high frequency. The resultant values are processed and demonstrated via a speech alerting signals and messages. This contributes to reducing the computation load and increasing the accuracy. Algorithm was tested on eight real-time video data sets. The results show that our proposed method greatly reduces computing effort while maintaining comparable accuracy. It takes 45 fps to detect one image when the input size is 1280 × 960, which could keep a real-time speed. Proposed algorithm works well in case of tilted, blurred, and occluded license plates. Also, an auditory traffic monitoring system can reduce criminal attacks by detecting suspicious license plates. The proposed algorithm is highly applicable for autonomous driving applications.

摘要

计算机视觉中的应用范围广泛,涉及到各种对象检测算法,这些算法都受益于人工智能和机器学习算法的强大功能。先进的检测模型,如更快的基于区域的卷积神经网络(RCNN)、单发多盒检测器(SSD)和单次检测(YOLO),在对象检测方面表现出了良好的性能,但在检测小物体方面存在许多问题。针对这个问题,本文提出了一种改进的 YOLOv4 网络结构。本文提出了一种使用实时高分辨率数据进行训练的小物体检测算法,并将其移植到嵌入式平台上。本文考虑使用汽车图像中的小车牌照识别来进行检测,并生成听觉语音信号来检测伪造的车牌。所提出的网络在以下几个方面进行了改进:使用从图像的核心模式形成的正数据集来训练分类器。通过将图像分解为低频和高频来训练 YOLOv4。对得到的数值进行处理,并通过语音警报信号和消息进行演示。这有助于减少计算负载并提高准确性。该算法在八个实时视频数据集上进行了测试。结果表明,我们提出的方法在保持可比准确性的同时,大大减少了计算量。当输入大小为 1280×960 时,检测一张图像需要 45 fps,可以保持实时速度。所提出的算法在车牌倾斜、模糊和遮挡的情况下效果良好。此外,听觉交通监控系统可以通过检测可疑车牌来减少犯罪攻击。所提出的算法非常适用于自动驾驶应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/a46f3f3540a2/CIN2022-4423744.alg.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/6b88c8cd4aa5/CIN2022-4423744.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/4300a46f522a/CIN2022-4423744.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/5d4a9fa18e1b/CIN2022-4423744.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/92a516d3e383/CIN2022-4423744.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/b56f6fcfea9e/CIN2022-4423744.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/03537a756b6f/CIN2022-4423744.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/44ab5ba64d66/CIN2022-4423744.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/f7e6f29bf641/CIN2022-4423744.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/a46f3f3540a2/CIN2022-4423744.alg.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/6b88c8cd4aa5/CIN2022-4423744.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/4300a46f522a/CIN2022-4423744.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/5d4a9fa18e1b/CIN2022-4423744.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/92a516d3e383/CIN2022-4423744.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/b56f6fcfea9e/CIN2022-4423744.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/03537a756b6f/CIN2022-4423744.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/44ab5ba64d66/CIN2022-4423744.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/f7e6f29bf641/CIN2022-4423744.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ff/9462979/a46f3f3540a2/CIN2022-4423744.alg.001.jpg

相似文献

[1]
Auditory Speech Based Alerting System for Detecting Dummy Number Plate via Video Processing Data sets.

Comput Intell Neurosci. 2022

[2]
Improved SSD network for fast concealed object detection and recognition in passive terahertz security images.

Sci Rep. 2022-7-15

[3]
An object detection algorithm combining self-attention and YOLOv4 in traffic scene.

PLoS One. 2023

[4]
Automatic Target Detection from Satellite Imagery Using Machine Learning.

Sensors (Basel). 2022-2-2

[5]
DeepSperm: A robust and real-time bull sperm-cell detection in densely populated semen videos.

Comput Methods Programs Biomed. 2021-9

[6]
Deep learning based real-time tourist spots detection and recognition mechanism.

Sci Prog. 2021-9

[7]
Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin.

Sensors (Basel). 2022-8-18

[8]
Comparative Evaluation of Convolutional Neural Network Object Detection Algorithms for Vehicle Detection.

J Imaging. 2024-7-5

[9]
A New Deep Model for Detecting Multiple Moving Targets in Real Traffic Scenarios: Machine Vision-Based Vehicles.

Sensors (Basel). 2022-5-14

[10]
A Multi-Stage Deep-Learning-Based Vehicle and License Plate Recognition System with Real-Time Edge Inference.

Sensors (Basel). 2023-2-13

本文引用的文献

[1]
UAV-YOLO: Small Object Detection on Unmanned Aerial Vehicle Perspective.

Sensors (Basel). 2020-4-15

[2]
80 million tiny images: a large data set for nonparametric object and scene recognition.

IEEE Trans Pattern Anal Mach Intell. 2008-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索