Suppr超能文献

基于四种免疫相关RNA结合蛋白构建多变量风险特征以预测肺腺癌患者的生存及免疫状态

Development of multivariable risk signature based on four immune-related RNA-binding proteins to predict survival and immune status in lung adenocarcinoma.

作者信息

You Qingsheng, Shen Hao

机构信息

Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China.

School of Medicine, Nantong University, Nantong, China.

出版信息

Transl Cancer Res. 2022 Aug;11(8):2591-2606. doi: 10.21037/tcr-22-698.

Abstract

BACKGROUND

This study aimed to construct a risk signature with predictive power based on immune-related RNA-binding proteins (RBPs) for lung adenocarcinoma (LUAD) patients.

METHODS

The Cancer Genome Atlas (TCGA) database was used as the data source. Immune genes (IGs) were obtained from the Immunology Database and Analysis Portal (immPort) database. Differentially expressed RBPs and IGs between tumor and normal tissues were screened. For external validation, an independent cohort from the Gene-Expression Omnibus (GEO) database was used. The accuracy of the risk signature prediction was evaluated using Cox regression analysis and the receiver operating characteristic (ROC) curve.

RESULTS

The risk signature was constructed from four immune-related and prognostic RBPs (, , , and ). The patients were divided into the low- and high-risk groups, with the low-risk group having a higher survival rate than the high-risk group. The risk signature outperformed other clinical parameters, with a multivariable hazard ratio of 1.862 (95% confidence interval: 1.292-2.683). The tumor immune microenvironment, stemness index, immune checkpoint, immune infiltration, and proportion of immune cells were significantly different between the low- and high-risk groups (all P<0.05).

CONCLUSIONS

The risk signature of immune-related RBPs can provide the basis for clinical decisions regarding diagnosis, prognosis, and immunotherapy in LUAD patients.

摘要

背景

本研究旨在基于免疫相关的RNA结合蛋白(RBPs)构建具有预测能力的风险特征,用于肺腺癌(LUAD)患者。

方法

使用癌症基因组图谱(TCGA)数据库作为数据源。免疫基因(IGs)从免疫数据库和分析门户(immPort)数据库中获取。筛选肿瘤组织和正常组织之间差异表达的RBPs和IGs。为了进行外部验证,使用了来自基因表达综合数据库(GEO)的独立队列。使用Cox回归分析和受试者工作特征(ROC)曲线评估风险特征预测的准确性。

结果

风险特征由四个免疫相关且具有预后意义的RBPs(、、和)构建而成。患者被分为低风险组和高风险组,低风险组的生存率高于高风险组。该风险特征优于其他临床参数,多变量风险比为1.862(95%置信区间:1.292 - 2.683)。低风险组和高风险组之间的肿瘤免疫微环境、干性指数、免疫检查点、免疫浸润和免疫细胞比例存在显著差异(均P<0.05)。

结论

免疫相关RBPs的风险特征可为LUAD患者的诊断、预后和免疫治疗的临床决策提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6251/9459526/a43f47c4575d/tcr-11-08-2591-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验