Suppr超能文献

通过迁移学习方法进行阿尔茨海默病分类

Alzheimer Disease Classification through Transfer Learning Approach.

作者信息

Raza Noman, Naseer Asma, Tamoor Maria, Zafar Kashif

机构信息

Department of Computer Science, National University of Computer and Emerging Sciences, Lahore 54770, Pakistan.

Department of Computer Science, Forman Christian College, Lahore 54600, Pakistan.

出版信息

Diagnostics (Basel). 2023 Feb 20;13(4):801. doi: 10.3390/diagnostics13040801.

Abstract

Alzheimer's disease (AD) is a slow neurological disorder that destroys the thought process, and consciousness, of a human. It directly affects the development of mental ability and neurocognitive functionality. The number of patients with Alzheimer's disease is increasing day by day, especially in old aged people, who are above 60 years of age, and, gradually, it becomes cause of their death. In this research, we discuss the segmentation and classification of the Magnetic resonance imaging (MRI) of Alzheimer's disease, through the concept of transfer learning and customizing of the convolutional neural network (CNN) by specifically using images that are segmented by the Gray Matter (GM) of the brain. Instead of training and computing the proposed model accuracy from the start, we used a pre-trained deep learning model as our base model, and, after that, transfer learning was applied. The accuracy of the proposed model was tested over a different number of epochs, 10, 25, and 50. The overall accuracy of the proposed model was 97.84%.

摘要

阿尔茨海默病(AD)是一种缓慢进展的神经疾病,它会破坏人类的思维过程和意识。它直接影响智力和神经认知功能的发展。阿尔茨海默病患者的数量日益增加,尤其是在60岁以上的老年人中,并且逐渐成为他们死亡的原因。在本研究中,我们通过迁移学习的概念以及对卷积神经网络(CNN)进行定制,具体利用大脑灰质(GM)分割的图像,来探讨阿尔茨海默病的磁共振成像(MRI)的分割和分类。我们没有从头开始训练并计算所提出模型的准确率,而是使用一个预训练的深度学习模型作为我们的基础模型,然后应用迁移学习。在所提出的模型在10、25和50个不同轮次上测试了准确率。所提出模型的总体准确率为97.84%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34af/9955379/5523405d8cc7/diagnostics-13-00801-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验