Suppr超能文献

用于预测重度抑郁症患者对舍曲林和安慰剂治疗反应的脑电图生物标志物

EEG Biomarkers to Predict Response to Sertraline and Placebo Treatment in Major Depressive Disorder.

作者信息

Oakley Thomas, Coskuner Jonathan, Cadwallader Andrew, Ravan Maryam, Hasey Gary

出版信息

IEEE Trans Biomed Eng. 2023 Mar;70(3):909-919. doi: 10.1109/TBME.2022.3204861. Epub 2023 Feb 17.

Abstract

OBJECTIVE

Major depressive disorder (MDD) is a persistent psychiatric condition, and the leading cause of disability, affecting up to 5% of the population worldwide. Antidepressant medications (ADMs) are often the first-line treatment for MDD, but it may take the clinician months of "trial and error" to find an effective ADM for a particular patient. Therefore, identification of predictive biomarkers that can be used to accurately determine the effectiveness of a specific treatment for an individual patient is extremely valuable.

METHOD

Using resting EEG data, we develop a machine learning algorithm (MLA) that searches for connectivity patterns within an individual's EEG signal that are predictive of the probability of responding to the antidepressant Sertraline or Placebo. The MLA has two steps: 1) Directed phase lag index (DPLI), a measure of phase synchronization between brain regions, that is not sensitive to volume conduction is applied to resting-state EEG data, 2) the resulting DPLI matrix is searched for a pattern set of features that can be used to successfully predict the response to Sertraline or Placebo.

RESULTS

Our MLA predicted response to Sertraline (N = 105) or Placebo (N = 119) with more than 80% accuracy.

CONCLUSION

Our findings suggest that feature patterns selected from a DPLI matrix may be predictive of response to Sertraline and to Placebo.

SIGNIFICANCE

The proposed MLA may provide an inexpensive, non-invasive, and readily available tool that clinicians may use to enhance treatment effectiveness, accelerate time to recovery, reduce personal suffering, and decrease treatment costs.

摘要

目的

重度抑郁症(MDD)是一种持续性精神疾病,也是导致残疾的主要原因,全球高达5%的人口受其影响。抗抑郁药物(ADM)通常是MDD的一线治疗方法,但临床医生可能需要数月的“试错”才能为特定患者找到有效的ADM。因此,识别可用于准确确定特定治疗对个体患者有效性的预测生物标志物极具价值。

方法

利用静息脑电图(EEG)数据,我们开发了一种机器学习算法(MLA),该算法在个体的EEG信号中搜索连接模式,这些模式可预测对抗抑郁药舍曲林或安慰剂的反应概率。该MLA有两个步骤:1)将定向相位滞后指数(DPLI)(一种衡量脑区之间相位同步且对容积传导不敏感的指标)应用于静息态EEG数据;2)在得到的DPLI矩阵中搜索一组可用于成功预测对舍曲林或安慰剂反应的特征模式。

结果

我们的MLA预测对舍曲林(N = 105)或安慰剂(N = 119)反应的准确率超过80%。

结论

我们的研究结果表明,从DPLI矩阵中选择的特征模式可能预测对舍曲林和安慰剂的反应。

意义

所提出的MLA可能提供一种廉价、无创且易于获得的工具,临床医生可利用该工具提高治疗效果、加快康复时间、减轻个人痛苦并降低治疗成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验