Suppr超能文献

用于新冠肺炎的多模态数据机器学习

Machine learning with multimodal data for COVID-19.

作者信息

Chen Weijie, Sá Rui C, Bai Yuntong, Napel Sandy, Gevaert Olivier, Lauderdale Diane S, Giger Maryellen L

机构信息

Medical Imaging and Data Resource Center (MIDRC), USA.

Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, USA.

出版信息

Heliyon. 2023 Jul 5;9(7):e17934. doi: 10.1016/j.heliyon.2023.e17934. eCollection 2023 Jul.

Abstract

In response to the unprecedented global healthcare crisis of the COVID-19 pandemic, the scientific community has joined forces to tackle the challenges and prepare for future pandemics. Multiple modalities of data have been investigated to understand the nature of COVID-19. In this paper, MIDRC investigators present an overview of the state-of-the-art development of multimodal machine learning for COVID-19 and model assessment considerations for future studies. We begin with a discussion of the lessons learned from radiogenomic studies for cancer diagnosis. We then summarize the multi-modality COVID-19 data investigated in the literature including symptoms and other clinical data, laboratory tests, imaging, pathology, physiology, and other omics data. Publicly available multimodal COVID-19 data provided by MIDRC and other sources are summarized. After an overview of machine learning developments using multimodal data for COVID-19, we present our perspectives on the future development of multimodal machine learning models for COVID-19.

摘要

为应对新冠疫情这一前所未有的全球医疗危机,科学界联合起来应对挑战并为未来的大流行做准备。人们研究了多种数据模式以了解新冠病毒的本质。在本文中,MIDRC的研究人员概述了用于新冠病毒的多模态机器学习的最新进展以及未来研究的模型评估考量。我们首先讨论从用于癌症诊断的放射基因组学研究中吸取的经验教训。然后我们总结文献中研究的多模态新冠数据,包括症状及其他临床数据、实验室检测、影像学、病理学、生理学和其他组学数据。还总结了MIDRC和其他来源提供的公开可用的多模态新冠数据。在概述了使用多模态数据进行新冠病毒机器学习的进展之后,我们阐述了对用于新冠病毒的多模态机器学习模型未来发展的看法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b85/10362086/d7bf99431aa1/gr1.jpg

相似文献

1
Machine learning with multimodal data for COVID-19.
Heliyon. 2023 Jul 5;9(7):e17934. doi: 10.1016/j.heliyon.2023.e17934. eCollection 2023 Jul.
3
Artificial intelligence-based methods for fusion of electronic health records and imaging data.
Sci Rep. 2022 Oct 26;12(1):17981. doi: 10.1038/s41598-022-22514-4.
4
Multi-objective optimization determines when, which and how to fuse deep networks: An application to predict COVID-19 outcomes.
Comput Biol Med. 2023 Mar;154:106625. doi: 10.1016/j.compbiomed.2023.106625. Epub 2023 Feb 2.
5
CPAS: the UK's national machine learning-based hospital capacity planning system for COVID-19.
Mach Learn. 2021;110(1):15-35. doi: 10.1007/s10994-020-05921-4. Epub 2020 Nov 24.
7
MultiBench: Multiscale Benchmarks for Multimodal Representation Learning.
Adv Neural Inf Process Syst. 2021 Dec;2021(DB1):1-20.
8
Machine learning to analyse omic-data for COVID-19 diagnosis and prognosis.
BMC Bioinformatics. 2023 Jan 6;24(1):7. doi: 10.1186/s12859-022-05127-6.
9
Multimodal Machine Learning: A Survey and Taxonomy.
IEEE Trans Pattern Anal Mach Intell. 2019 Feb;41(2):423-443. doi: 10.1109/TPAMI.2018.2798607. Epub 2018 Jan 25.

引用本文的文献

1
Demonstration of Interoperability Between MIDRC and N3C: A COVID-19 Severity Prediction Use Case.
J Imaging Inform Med. 2025 Aug 14. doi: 10.1007/s10278-025-01605-4.
3
Machine Learning Techniques Applied to COVID-19 Prediction: A Systematic Literature Review.
Bioengineering (Basel). 2025 May 13;12(5):514. doi: 10.3390/bioengineering12050514.
4
Medical multimodal multitask foundation model for lung cancer screening.
Nat Commun. 2025 Feb 11;16(1):1523. doi: 10.1038/s41467-025-56822-w.
6
Efficient clinical decision-making process via AI-based multimodal data fusion: A COVID-19 case study.
Heliyon. 2024 Oct 10;10(20):e38642. doi: 10.1016/j.heliyon.2024.e38642. eCollection 2024 Oct 30.
7
Algorithms for predicting COVID outcome using ready-to-use laboratorial and clinical data.
Front Public Health. 2024 May 14;12:1347334. doi: 10.3389/fpubh.2024.1347334. eCollection 2024.
9
Toward the novel AI tasks in infection biology.
mSphere. 2024 Feb 28;9(2):e0059123. doi: 10.1128/msphere.00591-23. Epub 2024 Feb 9.
10
A survey on the role of artificial intelligence in managing Long COVID.
Front Artif Intell. 2024 Jan 11;6:1292466. doi: 10.3389/frai.2023.1292466. eCollection 2023.

本文引用的文献

2
Exploring approaches for predictive cancer patient digital twins: Opportunities for collaboration and innovation.
Front Digit Health. 2022 Oct 6;4:1007784. doi: 10.3389/fdgth.2022.1007784. eCollection 2022.
3
EEG Biomarkers to Predict Response to Sertraline and Placebo Treatment in Major Depressive Disorder.
IEEE Trans Biomed Eng. 2023 Mar;70(3):909-919. doi: 10.1109/TBME.2022.3204861. Epub 2023 Feb 17.
4
5
Pan-cancer integrative histology-genomic analysis via multimodal deep learning.
Cancer Cell. 2022 Aug 8;40(8):865-878.e6. doi: 10.1016/j.ccell.2022.07.004.
6
Symptoms and risk factors for long COVID in non-hospitalized adults.
Nat Med. 2022 Aug;28(8):1706-1714. doi: 10.1038/s41591-022-01909-w. Epub 2022 Jul 25.
7
Lung Abnormalities Detected with Hyperpolarized Xe MRI in Patients with Long COVID.
Radiology. 2022 Dec;305(3):709-717. doi: 10.1148/radiol.220069. Epub 2022 May 24.
8
SARS-CoV-2 is associated with changes in brain structure in UK Biobank.
Nature. 2022 Apr;604(7907):697-707. doi: 10.1038/s41586-022-04569-5. Epub 2022 Mar 7.
10
Tip of the iceberg: erectile dysfunction and COVID-19.
Int J Impot Res. 2022 Mar;34(2):152-157. doi: 10.1038/s41443-022-00540-0. Epub 2022 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验