Suppr超能文献

使用伪异常来稳定对抗学习的单类新奇性检测

Stabilizing Adversarially Learned One-Class Novelty Detection Using Pseudo Anomalies.

作者信息

Zaheer Muhammad Zaigham, Lee Jin-Ha, Mahmood Arif, Astrid Marcella, Lee Seung-Ik

出版信息

IEEE Trans Image Process. 2022;31:5963-5975. doi: 10.1109/TIP.2022.3204217. Epub 2022 Sep 15.

Abstract

Recently, anomaly scores have been formulated using reconstruction loss of the adversarially learned generators and/or classification loss of discriminators. Unavailability of anomaly examples in the training data makes optimization of such networks challenging. Attributed to the adversarial training, performance of such models fluctuates drastically with each training step, making it difficult to halt the training at an optimal point. In the current study, we propose a robust anomaly detection framework that overcomes such instability by transforming the fundamental role of the discriminator from identifying real vs. fake data to distinguishing good vs. bad quality reconstructions. For this purpose, we propose a method that utilizes the current state as well as an old state of the same generator to create good and bad quality reconstruction examples. The discriminator is trained on these examples to detect the subtle distortions that are often present in the reconstructions of anomalous data. In addition, we propose an efficient generic criterion to stop the training of our model, ensuring elevated performance. Extensive experiments performed on six datasets across multiple domains including image and video based anomaly detection, medical diagnosis, and network security, have demonstrated excellent performance of our approach.

摘要

最近,异常分数是利用对抗学习生成器的重建损失和/或判别器的分类损失来制定的。训练数据中缺乏异常示例使得此类网络的优化具有挑战性。由于对抗训练,此类模型的性能在每个训练步骤中都会大幅波动,难以在最佳点停止训练。在当前研究中,我们提出了一个强大的异常检测框架,该框架通过将判别器的基本作用从识别真实数据与虚假数据转变为区分高质量重建与低质量重建来克服这种不稳定性。为此,我们提出了一种方法,该方法利用同一生成器的当前状态以及旧状态来创建高质量和低质量的重建示例。判别器在这些示例上进行训练,以检测异常数据重建中经常出现的细微失真。此外,我们提出了一个有效的通用标准来停止模型的训练,确保性能提升。在包括基于图像和视频的异常检测、医学诊断和网络安全在内的多个领域的六个数据集上进行的广泛实验证明了我们方法的卓越性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验