Suppr超能文献

利用生成对抗网络在视频会议中检测实时深度伪造和面部伪造

Detection of real-time deep fakes and face forgery in video conferencing employing generative adversarial networks.

作者信息

Sharma Sunil Kumar, AlEnizi Abdullah, Kumar Manoj, Alfarraj Osama, Alowaidi Majed

机构信息

Department of Information System, College of Computer and Information Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia.

Department of Information Technology, College of Computer and Information Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia.

出版信息

Heliyon. 2024 Aug 29;10(17):e37163. doi: 10.1016/j.heliyon.2024.e37163. eCollection 2024 Sep 15.

Abstract

As facial modification technology advances rapidly, it poses a challenge to methods used to detect fake faces. The advent of deep learning and AI-based technologies has led to the creation of counterfeit photographs that are more difficult to discern apart from real ones. Existing Deep fake detection systems excel at spotting fake content with low visual quality and are easily recognized by visual artifacts. The study employed a unique active forensic strategy Compact Ensemble-based discriminators architecture using Deep Conditional Generative Adversarial Networks (CED-DCGAN), for identifying real-time deep fakes in video conferencing. DCGAN focuses on video-deep fake detection on features since technologies for creating convincing fakes are improving rapidly. As a first step towards recognizing DCGAN-generated images, split real-time video images into frames containing essential elements and then use that bandwidth to train an ensemble-based discriminator as a classifier. Spectra anomalies are produced by up-sampling processes, standard procedures in GAN systems for making large amounts of fake data films. The Compact Ensemble discriminator (CED) concentrates on the most distinguishing feature between the natural and synthetic images, giving the generators a robust training signal. As empirical results on publicly available datasets show, the suggested algorithms outperform state-of-the-art methods and the proposed CED-DCGAN technique successfully detects high-fidelity deep fakes in video conferencing and generalizes well when comparing with other techniques. Python tool is used for implementing this proposed study and the accuracy obtained for proposed work is 98.23 %.

摘要

随着面部修改技术的迅速发展,它对用于检测假脸的方法构成了挑战。深度学习和基于人工智能的技术的出现导致了伪造照片的产生,这些照片比真实照片更难辨别。现有的深度伪造检测系统擅长识别视觉质量低的假内容,并且很容易被视觉伪像识别出来。该研究采用了一种独特的主动取证策略——基于紧凑集成鉴别器架构的深度条件生成对抗网络(CED-DCGAN),用于在视频会议中识别实时深度伪造。DCGAN专注于基于特征的视频深度伪造检测,因为用于创建逼真伪造的技术正在迅速改进。作为识别DCGAN生成图像的第一步,将实时视频图像分割成包含基本元素的帧,然后利用该带宽训练基于集成的鉴别器作为分类器。频谱异常是由上采样过程产生的,这是GAN系统中用于制作大量假数据影片的标准程序。紧凑集成鉴别器(CED)专注于自然图像和合成图像之间最具区别性的特征,为生成器提供强大的训练信号。正如在公开可用数据集上的实证结果所示,所提出的算法优于现有技术方法,并且所提出的CED-DCGAN技术成功地检测了视频会议中的高保真深度伪造,并且与其他技术相比具有良好的泛化能力。使用Python工具来实现这项研究所提出的方法,所提出工作获得的准确率为98.23%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd76/11407936/a97d3b22768a/gr9.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验