IEEE Trans Med Imaging. 2023 Jan;42(1):132-147. doi: 10.1109/TMI.2022.3205940. Epub 2022 Dec 29.
Kinetic modeling of dynamic PET data requires knowledge of tracer concentration in blood plasma, described by the arterial input function (AIF). Arterial blood sampling is the gold standard for AIF measurement, but is invasive and labour intensive. A number of methods have been proposed to accurately estimate the AIF directly from blood sampling and/or imaging data. Here we consider fitting a patient-adaptive mixture of historical population time course profiles to estimate individual AIFs. Travel time of a tracer atom from the injection site to the right ventricle of the heart is modeled as a realization from a Gamma distribution, and the time this atom spends in circulation before being sampled is represented by a subject-specific linear mixture of population profiles. These functions are estimated from independent population data. Individual AIFs are obtained by projection onto this basis of population profile components. The model incorporates knowledge of injection duration into the fit, allowing for varying injection protocols. Analyses of arterial sampling data from 18F-FDG, 15O-H2O and 18F-FLT clinical studies show that the proposed model can outperform reference techniques. The statistically significant gain achieved by using population data to train the basis components, instead of fitting these from the single individual sampling data, is measured on the FDG cohort. Kinetic analyses of simulated data demonstrate the reliability and potential benefit of this approach in estimating physiological parameters. These results are further supported by numerical simulations that demonstrate convergence and stability of the proposed technique under varying training population sizes and noise levels.
动态 PET 数据的动力学建模需要了解血浆中的示踪剂浓度,这由动脉输入函数 (AIF) 描述。动脉采血是 AIF 测量的金标准,但具有侵入性和劳动强度大。已经提出了许多方法来从采血和/或成像数据中准确估计 AIF。在这里,我们考虑通过拟合患者自适应混合历史人群时间过程谱来估计个体 AIF。示踪原子从注射部位到心脏右心室的旅行时间被建模为伽马分布的实现,并且在被采样之前在循环中花费的时间由个体的人口分布的线性混合物表示。这些函数是从独立的人群数据中估计的。个体 AIF 通过投影到人群分布分量的这个基上来获得。该模型将注射持续时间的知识纳入拟合中,从而允许不同的注射方案。对来自 18F-FDG、15O-H2O 和 18F-FLT 临床研究的动脉采样数据的分析表明,所提出的模型可以优于参考技术。通过使用人群数据来训练基分量而不是从单个个体采样数据拟合这些分量,可以在 FDG 队列中测量到使用人群数据的显著增益。模拟数据的动力学分析表明了这种方法在估计生理参数方面的可靠性和潜在益处。这些结果进一步得到了数值模拟的支持,该模拟表明了在不同的训练人群大小和噪声水平下提出的技术的收敛性和稳定性。