Department of Statistics, University College Cork, Cork, Ireland.
Phys Med Biol. 2023 Apr 7;68(8):085014. doi: 10.1088/1361-6560/acc634.
Blood pool region of interest (ROI) data extracted from the field of view of a PET scanner can be impacted by both dispersive and background effects. This circumstance compromises the ability to correctly extract the arterial input function (AIF) signal. The paper explores a novel approach to addressing this difficulty.The method involves representing the AIF in terms of the whole-body impulse response (IR) to the injection profile. Analysis of a collection/population of directly sampled arterial data sets allows the statistical behaviour of the tracer's impulse response to be evaluated. It is proposed that this information be used to develop a penalty term for construction of a data-adaptive method of regularisation estimator of the AIF when dispersive and/or background effects maybe impacting the blood pool ROI data.Computational efficiency of the approach derives from the linearity of the impulse response representation of the AIF and the ability to substantially rely on quadratic programming techniques for numerical implementation. Data from eight different tracers, used in PET cancer imaging studies, are considered. Sample image-based AIF extractions for brain studies with:F-labeled fluoro-deoxyglucose and fluoro-thymidine (FLT),C-labeled carbon dioxide (CO2) andO-labeled water (H2O) are presented. Results are compared to the true AIF based on direct arterial sampling. Formal numerical simulations are used to evaluate the performance of the AIF extraction method when the ROI data has varying amounts of contamination, in comparison to a direct approach that ignores such effects. It is found that even with quite small amounts of contamination, the mean squared error of the regularised AIF is significantly better than the error associated with direct use of the ROI data.The proposed IR-based AIF extraction scheme offers a practical methodological approach for situations where the available image ROI data may be contaminated by background and/or dispersion effects.
从 PET 扫描仪视场中提取的血池感兴趣区 (ROI) 数据可能会受到分散和背景效应的影响。这种情况会影响正确提取动脉输入函数 (AIF) 信号的能力。本文探讨了一种解决这一难题的新方法。该方法涉及根据注射轮廓的全身脉冲响应 (IR) 来表示 AIF。对直接采样的动脉数据集的集合/群体进行分析,可以评估示踪剂脉冲响应的统计行为。提出使用该信息来开发用于构建 AIF 的数据自适应正则化估计器的惩罚项,当分散和/或背景效应可能影响血池 ROI 数据时。该方法的计算效率源自 AIF 的脉冲响应表示的线性性,并且能够大量依赖于二次规划技术来进行数值实现。考虑了用于 PET 癌症成像研究的八种不同示踪剂的数据。考虑了基于样本的脑研究的基于图像的 AIF 提取:用 F 标记的氟脱氧葡萄糖和氟胸腺嘧啶 (FLT)、C 标记的二氧化碳 (CO2) 和 O 标记的水 (H2O)。将结果与基于直接动脉采样的真实 AIF 进行比较。正式的数值模拟用于评估当 ROI 数据受到不同程度的污染时,与忽略这种影响的直接方法相比,AIF 提取方法的性能。结果发现,即使污染量很小,正则化 AIF 的均方误差也明显优于直接使用 ROI 数据的误差。基于 IR 的 AIF 提取方案为可能受到背景和/或分散效应污染的可用图像 ROI 数据提供了一种实用的方法。