Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
Nucleic Acids Res. 2022 Nov 11;50(20):e116. doi: 10.1093/nar/gkac723.
Tandem repeats of simple sequence motifs, also known as microsatellites, are abundant in the genome. Because their repeat structure makes replication error-prone, variant microsatellite lengths are often generated during germline and other somatic expansions. As such, microsatellite length variations can serve as markers for cancer. However, accurate error-free measurement of microsatellite lengths is difficult with current methods precisely because of this high error rate during amplification. We have solved this problem by using partial mutagenesis to disrupt enough of the repeat structure of initial templates so that their sequence lengths replicate faithfully. In this work, we use bisulfite mutagenesis to convert a C to a U, later read as T. Compared to untreated templates, we achieve three orders of magnitude reduction in the error rate per round of replication. By requiring agreement from two independent first copies of an initial template, we reach error rates below one in a million. We apply this method to a thousand microsatellite loci from the human genome, revealing microsatellite length distributions not observable without mutagenesis.
串联重复的简单序列基序,也称为微卫星,在基因组中大量存在。由于它们的重复结构使复制容易出错,因此在生殖系和其他体细胞扩增过程中经常会产生变异的微卫星长度。因此,微卫星长度的变化可以作为癌症的标志物。然而,由于扩增过程中的高错误率,目前的方法很难准确无误地测量微卫星的长度。我们通过使用部分诱变来破坏初始模板的重复结构,从而使其序列长度忠实复制,从而解决了这个问题。在这项工作中,我们使用亚硫酸氢盐诱变将 C 转化为 U,随后读为 T。与未处理的模板相比,我们在每一轮复制中实现了三个数量级的错误率降低。通过要求初始模板的两个独立的第一份副本一致,我们将错误率降低到百万分之一以下。我们将这种方法应用于人类基因组中的一千个微卫星基因座,揭示了没有诱变就无法观察到的微卫星长度分布。