Suppr超能文献

通过机器学习模拟重金属污染土壤的植物修复。

Modeling phytoremediation of heavy metal contaminated soils through machine learning.

机构信息

Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.

Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore; CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

出版信息

J Hazard Mater. 2023 Jan 5;441:129904. doi: 10.1016/j.jhazmat.2022.129904. Epub 2022 Sep 5.

Abstract

As an important subtopic within phytoremediation, hyperaccumulators have garnered significant attention due to their ability of super-enriching heavy metals. Identifying the factors that affecting phytoextraction efficiency has important application value in guiding the efficient remediation of heavy metal contaminated soil. However, it is challenging to identify the critical factors that affect the phytoextraction of heavy metals in soil-hyperaccumulator ecosystems because the current projections on phytoremediation extrapolations are rudimentary at best using simple linear models. Here, machine learning (ML) approaches were used to predict the important factors that affecting phytoextraction efficiency of hyperaccumulators. ML analysis was based on 173 data points with consideration of soil properties, experimental conditions, plant families, low-molecular-weight organic acids from plants, plant genes, and heavy metal properties. Heavy metal properties, especially the metal ion radius, were the most important factors that affect heavy metal accumulation in shoots, and the plant family was the most important factor that affect the bioconcentration factor, metal extraction ratio, and remediation time. Furthermore, the Crassulaceae family had the highest potential as hyperaccumulators for phytoremediation, which was related to the expression of genes encoding heavy metal transporting ATPase (HMA), Metallothioneins (MTL), and natural resistance associated macrophage protein (NRAMP), and also the secretion of malate and threonine. New insights into the effects of plant characteristics, experimental conditions, soil characteristics, and heavy metal properties on phytoextraction efficiency from ML model interpretation could guide the efficient phytoremediation by identifying the best hyperaccumulators and resolving its efficient remediation mechanisms.

摘要

作为植物修复的一个重要分支,超积累植物因其超富集重金属的能力而受到广泛关注。确定影响植物提取效率的因素对于指导重金属污染土壤的有效修复具有重要的应用价值。然而,由于目前对植物修复的预测充其量只是使用简单的线性模型,因此很难确定影响土壤-超积累植物生态系统中重金属植物提取的关键因素。在这里,机器学习(ML)方法被用于预测影响超积累植物植物提取效率的重要因素。ML 分析基于 173 个数据点,考虑了土壤特性、实验条件、植物科、植物来源的低分子量有机酸、植物基因和重金属特性。重金属特性,特别是金属离子半径,是影响植物地上部重金属积累的最重要因素,而植物科是影响生物浓缩系数、金属提取率和修复时间的最重要因素。此外,景天科作为植物修复的超积累植物具有最大的潜力,这与编码重金属转运 ATP 酶(HMA)、金属硫蛋白(MTL)和天然抗性相关巨噬细胞蛋白(NRAMP)的基因表达以及苹果酸和苏氨酸的分泌有关。从 ML 模型解释中深入了解植物特性、实验条件、土壤特性和重金属特性对植物提取效率的影响,可以通过识别最佳超积累植物并解决其有效修复机制来指导有效的植物修复。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验