Zhang Wenyao, Dong Muyao, Jiang Keren, Yang Diling, Tan Xuehai, Zhai Shengli, Feng Renfei, Chen Ning, King Graham, Zhang Hao, Zeng Hongbo, Li Hui, Antonietti Markus, Li Zhi
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, AB, Canada.
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, 210094, Nanjing, China.
Nat Commun. 2022 Sep 12;13(1):5348. doi: 10.1038/s41467-022-32955-0.
Aqueous zinc (Zn) chemistry features intrinsic safety, but suffers from severe irreversibility, as exemplified by low Coulombic efficiency, sustained water consumption and dendrite growth, which hampers practical applications of rechargeable Zn batteries. Herein, we report a highly reversible aqueous Zn battery in which the graphitic carbon nitride quantum dots additive serves as fast colloid ion carriers and assists the construction of a dynamic & self-repairing protective interphase. This real-time assembled interphase enables an ion-sieving effect and is found actively regenerate in each battery cycle, in effect endowing the system with single Zn conduction and constant conformal integrality, executing timely adaption of Zn deposition, thus retaining sustainable long-term protective effect. In consequence, dendrite-free Zn plating/stripping at ~99.6% Coulombic efficiency for 200 cycles, steady charge-discharge for 1200 h, and impressive cyclability (61.2% retention for 500 cycles in a Zn | |MnO full battery, 73.2% retention for 500 cycles in a Zn | |VO full battery and 93.5% retention for 3000 cycles in a Zn | |VOPO full battery) are achieved, which defines a general pathway to challenge Lithium in all low-cost, large-scale applications.
水系锌(Zn)化学具有本质安全性,但存在严重的不可逆性,例如库仑效率低、持续耗水和枝晶生长,这阻碍了可充电锌电池的实际应用。在此,我们报道了一种高度可逆的水系锌电池,其中石墨相氮化碳量子点添加剂充当快速胶体离子载体,并有助于构建动态且自我修复的保护界面。这种实时组装的界面实现了离子筛分效应,并在每个电池循环中能够主动再生,实际上赋予了系统单一的锌传导性和恒定的共形完整性,能够及时适应锌的沉积,从而保持可持续的长期保护效果。结果,实现了在约99.6%的库仑效率下进行200次循环无枝晶的锌电镀/剥离、1200小时的稳定充放电,以及令人印象深刻的循环稳定性(在Zn||MnO全电池中500次循环后保留率为61.2%,在Zn||VO全电池中500次循环后保留率为73.2%,在Zn||VOPO全电池中3000次循环后保留率为93.5%),这为在所有低成本、大规模应用中挑战锂提供了一条通用途径。