Zhang Weidong, Zhao Qing, Hou Yunpeng, Shen Zeyu, Fan Lei, Zhou Shaodong, Lu Yingying, Archer Lynden A
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China.
Sci Adv. 2021 Dec 3;7(49):eabl3752. doi: 10.1126/sciadv.abl3752. Epub 2021 Dec 1.
Secondary batteries based on earth-abundant, multivalent metals provide a promising path for high energy density and potentially low-cost electricity storage. Poor anodic reversibility caused by disordered metal crystallization during battery charging remains a fundamental, century-old challenge for the practical use of deep cycling metal batteries. We report that dynamic interphases formed by anisotropic nanostructures dispersed in a battery electrolyte provide a general method for achieving ordered assembly of metal electrodeposits and high anode reversibility. Interphases formed by anisotropic graphitic carbon nitride nanostructures in colloidal electrolytes are shown to promote formation of vertically aligned and spatially compact (~100% compactness) zinc electrodeposits with unprecedented, high levels of reversibility (>99.8%), even at quite high areal capacity (6 to 20 milliampere hour per square centimeter). It is also reported that the same concept enables uniform growth of compact magnesium and aluminum electrodeposits, defining a general pathway toward energy-dense metal batteries based on earth-abundant anode chemistries.
基于储量丰富的多价金属的二次电池为实现高能量密度和潜在低成本的电能存储提供了一条有前景的途径。电池充电过程中无序金属结晶导致的阳极可逆性差,仍然是深度循环金属电池实际应用中一个基本的、存在了百年的挑战。我们报道,分散在电池电解质中的各向异性纳米结构形成的动态界面,为实现金属电沉积物的有序组装和高阳极可逆性提供了一种通用方法。胶体电解质中由各向异性石墨相氮化碳纳米结构形成的界面,即使在相当高的面积容量(每平方厘米6至20毫安时)下,也能促进垂直排列且空间致密(~100%致密性)的锌电沉积物的形成,并具有前所未有的高可逆性(>99.8%)。还报道了相同的概念能够使致密的镁和铝电沉积物均匀生长,为基于储量丰富的阳极化学的高能量密度金属电池定义了一条通用途径。