Suppr超能文献

f 族单原子/金属氧化物异质结构上高效的硝酸盐转化为氨:局部电子缺陷调制

Efficient Nitrate Conversion to Ammonia on f-Block Single-Atom/Metal Oxide Heterostructure Local Electron-Deficiency Modulation.

作者信息

Kumar Ashwani, Lee Jinsun, Kim Min Gyu, Debnath Bharati, Liu Xinghui, Hwang Yosep, Wang Yue, Shao Xiaodong, Jadhav Amol R, Liu Yang, Tüysüz Harun, Lee Hyoyoung

机构信息

Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea.

Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea.

出版信息

ACS Nano. 2022 Sep 27;16(9):15297-15309. doi: 10.1021/acsnano.2c06747. Epub 2022 Sep 13.

Abstract

Exploring single-atom catalysts (SACs) for the nitrate reduction reaction (NO; NitRR) to value-added ammonia (NH) offers a sustainable alternative to both the Haber-Bosch process and NO-rich wastewater treatment. However, due to the insufficient electron deficiency and unfavorable electronic structure of SACs, resulting in poor NO-adsorption, sluggish proton (H*) transfer kinetics, and preferred hydrogen evolution, their NO-to-NH selectivity and yield rate are far from satisfactory. Herein, a systematic theoretical prediction reveals that the local electron deficiency of an -block Gd single atom (Gd) can be significantly regulated upon coordination with oxygen-defect-rich NiO (Gd-D-NiO) support. Thus, facilitating stronger NO adsorption strong Gd-O orbital coupling and further improving the protonation kinetics of adsorption intermediates by rapid H* capture from water dissociation catalyzed by the adjacent oxygen vacancy site along with suppressed H* dimerization synergistically boosts the NH selectivity/yield rate. Motivated by DFT prediction, we delicately stabilized electron-deficient (strongly electrophilic) Gd on D-NiO (∼84% strong electrophilic sites), which exhibited excellent alkaline NitRR activity (NH Faradaic efficiency ∼97% and yield rate ∼628 μg/(mg h)) along with superior structural stability, as revealed by Raman spectroscopy, significantly outperforming weakly electrophilic Gd nanoparticles, defect-free Gd-P-NiO, and reported state-of-the-art catalysts.

摘要

探索用于将硝酸盐还原反应(NO₃⁻;NitRR)转化为增值氨(NH₃)的单原子催化剂(SACs),为哈伯-博施工艺和富含NO₃⁻的废水处理提供了一种可持续的替代方案。然而,由于SACs的电子缺陷不足和电子结构不利,导致NO₃⁻吸附不佳、质子(H⁺)转移动力学缓慢以及优先析氢,它们的NO₃⁻到NH₃的选择性和产率远不能令人满意。在此,一项系统的理论预测表明,当与富含氧缺陷的NiO(Gd-D-NiO)载体配位时,α-块体Gd单原子(Gd)的局部电子缺陷可以得到显著调节。因此,通过与相邻氧空位位点催化的水解离快速捕获H⁺,促进更强的NO₃⁻吸附(强Gd-O轨道耦合),并进一步改善吸附中间体的质子化动力学,同时抑制H⁺二聚化,协同提高了NH₃的选择性/产率。受密度泛函理论(DFT)预测的启发,我们在D-NiO上精细地稳定了电子缺陷(强亲电)的Gd(约84%的强亲电位点),拉曼光谱显示,其表现出优异的碱性NitRR活性(NH₃法拉第效率约97%,产率约628 μg/(mg h))以及卓越的结构稳定性,显著优于弱亲电的Gd纳米颗粒、无缺陷的Gd-P-NiO和已报道的最先进催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验