Suppr超能文献

通过固液界面处的反应物富集实现近乎完全的硝酸盐到氨的转化。

Near-Unity Nitrate to Ammonia conversion via reactant enrichment at the solid-liquid interface.

作者信息

Liao Wanru, Wang Jun, Tan Yao, Zi Xin, Liu Changxu, Wang Qiyou, Zhu Li, Kao Cheng-Wei, Chan Ting-Shan, Li Hongmei, Zhang Yali, Liu Kang, Cai Chao, Fu Junwei, Xi Beidou, Cortés Emiliano, Chai Liyuan, Liu Min

机构信息

Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China.

School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology, Changsha, Hunan, P. R. China.

出版信息

Nat Commun. 2025 Jul 1;16(1):5715. doi: 10.1038/s41467-025-60671-y.

Abstract

Electroreduction of nitrate (NO) to ammonia (NH) is a promising approach for addressing energy challenges. However, the activity is limited by NO mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO concentration decreases, impeding practical applications in the conversion of NO-to-NH. Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS (Ag-MoS) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO. Thus, Ag-MoS exhibits a ~ 28.6-fold NO concentration in the IHP than the counterpart without junction, and achieves near-100% NH Faradaic efficiency with an NH yield rate of ~20 mg h cm under ultralow NO concentrations.

摘要

将硝酸盐(NO)电还原为氨(NH₃)是应对能源挑战的一种有前景的方法。然而,其活性受到NO传质的限制,特别是在还原电位下,阴极表面大量的电子会将NO从内亥姆霍兹平面(IHP)排斥开。随着NO浓度降低,这种限制变得更加明显,阻碍了NO转化为NH₃的实际应用。在此,我们提出一种通用的催化剂能带结构工程策略,通过固液(S-L)结介导IHP内的电荷重排来富集带负电的离子。具体而言,在NO还原过程中,S-L结的形成诱导空穴从Ag掺杂的MoS₂(Ag-MoS₂)转移到电极/电解质界面,在IHP上引发大量正电荷以吸引NO。因此,Ag-MoS₂在IHP中的NO浓度比无结的对应物高约28.6倍,并在超低NO浓度下实现了近100%的NH₃法拉第效率,NH₃产率约为20 mg h⁻¹ cm⁻²。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b5/12219233/237fc23b258b/41467_2025_60671_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验