Suppr超能文献

基于血糖水平和心电图的支持向量机低血糖预测算法。

A Prediction Algorithm for Hypoglycemia Based on Support Vector Machine Using Glucose Level and Electrocardiogram.

机构信息

Department of Medical Artificial Intelligence, Konyang University, Daejeon, Republic of Korea.

Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Kangwon-do, Republic of Korea.

出版信息

J Med Syst. 2022 Sep 14;46(10):68. doi: 10.1007/s10916-022-01859-3.

Abstract

A prediction algorithm for hypoglycemic events is proposed using glucose levels and electrocardiogram (ECG) with support vector machine (SVM). We extracted the corrected QT interval and five heart rate variability parameters from the ECG, along with glucose level from a continuous glucose monitoring system (CGMS). This feature set is used as input to the SVM, and hypoglycemic events are predicted every 5 min using the trained SVM model for up to 30 min in advance. The proposed algorithm was developed and evaluated for nine Type-1 diabetes patients in the D1NAMO dataset. The prediction sensitivity, specificity, and accuracy values for the test set were 91.1%, 87.0%, and 89.0% (10 min before); 88.0%, 84.3%, and 86.2% (20 min before); 80.1%, 83.3%, and 81.7% (30 min before), respectively. These results show higher performance of the proposed method compared to previous studies and suggest the possibility of predicting hypoglycemia in advance.

摘要

提出了一种使用支持向量机(SVM)的血糖水平和心电图(ECG)预测低血糖事件的算法。我们从 ECG 中提取了校正的 QT 间期和五个心率变异性参数,以及连续血糖监测系统(CGMS)中的血糖水平。该特征集被用作 SVM 的输入,使用经过训练的 SVM 模型每 5 分钟预测一次低血糖事件,可提前预测长达 30 分钟。该算法是在 D1NAMO 数据集的 9 名 1 型糖尿病患者中开发和评估的。测试集的预测灵敏度、特异性和准确率分别为 91.1%、87.0%和 89.0%(提前 10 分钟);88.0%、84.3%和 86.2%(提前 20 分钟);80.1%、83.3%和 81.7%(提前 30 分钟)。这些结果表明,与之前的研究相比,该方法具有更高的性能,并表明提前预测低血糖的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验