Suppr超能文献

基于心电信号和群集的低血糖检测支持向量机。

Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection.

机构信息

Faculty of Engineering and Information Technology, University of Technology Sydney, City Campus, 15 Broadway Road, Ultimo, NSW 2007, Australia.

出版信息

Ann Biomed Eng. 2012 Apr;40(4):934-45. doi: 10.1007/s10439-011-0446-7. Epub 2011 Oct 20.

Abstract

Cardiac arrhythmia relating to hypoglycemia is suggested as a cause of death in diabetic patients. This article introduces electrocardiographic (ECG) parameters for artificially induced hypoglycemia detection. In addition, a hybrid technique of swarm-based support vector machine (SVM) is introduced for hypoglycemia detection using the ECG parameters as inputs. In this technique, a particle swarm optimization (PSO) is proposed to optimize the SVM to detect hypoglycemia. In an experiment using medical data of patients with Type 1 diabetes, the introduced ECG parameters show significant contributions to the performance of the hypoglycemia detection and the proposed detection technique performs well in terms of sensitivity and specificity.

摘要

低血糖相关的心律失常被认为是糖尿病患者死亡的原因之一。本文介绍了用于检测人为诱导低血糖的心电图(ECG)参数。此外,还介绍了一种基于群集的支持向量机(SVM)的混合技术,该技术使用 ECG 参数作为输入来检测低血糖。在使用 1 型糖尿病患者的医学数据进行的实验中,引入的 ECG 参数对低血糖检测的性能有显著贡献,所提出的检测技术在灵敏度和特异性方面表现良好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验