Suppr超能文献

一种在新冠疫情期间监测建筑工人身体距离和口罩佩戴情况的自动系统。

An Automatic System to Monitor the Physical Distance and Face Mask Wearing of Construction Workers in COVID-19 Pandemic.

作者信息

Razavi Moein, Alikhani Hamed, Janfaza Vahid, Sadeghi Benyamin, Alikhani Ehsan

机构信息

Department of Computer Science and Engineering, Texas A&M University, College Station, Texas USA.

Department of Engineering, Texas A&M University, College Station, Texas USA.

出版信息

SN Comput Sci. 2022;3(1):27. doi: 10.1007/s42979-021-00894-0. Epub 2021 Oct 29.

Abstract

The COVID-19 pandemic has caused many shutdowns in different industries around the world. Sectors such as infrastructure construction and maintenance projects have not been suspended due to their significant effect on people's routine life. In such projects, workers work close together that makes a high risk of infection. The World Health Organization recommends wearing a face mask and practicing physical distancing to mitigate the virus's spread. In this paper, we developed a computer vision system to automatically detect the violation of face mask wearing and physical distancing among construction workers to assure their safety on infrastructure projects during the pandemic. For the face mask detection, we collected and annotated 1000 images, including different types of face mask wearing, and added them to a pre-existing face mask dataset to develop a dataset of 1853 images and increased the dataset to 3300 images by data augmentation. Then, we trained and tested multiple Tensorflow state-of-the-art object detection models on the face mask dataset and chose the Faster R-CNN Inception ResNet V2 network that yielded the accuracy of 99.8%. For physical distance detection, we employed the Faster R-CNN Inception V2 to detect people. A transformation matrix was used to eliminate the camera angle's effect on the object distances on the image. The Euclidian distance used the pixels of the transformed image to compute the actual distance between people. A threshold of six feet was considered to capture physical distance violation. We also used transfer learning for training the model. The final model was applied on four videos of road maintenance projects in Houston, TX, that effectively detected the face mask and physical distance. We recommend that construction owners use the proposed system to enhance construction workers' safety in the pandemic situation.

摘要

新冠疫情导致全球不同行业多次停工。基础设施建设和维护项目等行业因其对人们日常生活的重大影响而未暂停。在这类项目中,工人们紧密合作,这使得感染风险很高。世界卫生组织建议佩戴口罩并保持身体距离以减缓病毒传播。在本文中,我们开发了一个计算机视觉系统,用于自动检测建筑工人中违反佩戴口罩和保持身体距离规定的行为,以确保他们在疫情期间基础设施项目中的安全。对于口罩检测,我们收集并标注了1000张图像,包括不同类型的戴口罩情况,并将它们添加到一个现有的口罩数据集中,以开发一个包含1853张图像的数据集,并通过数据增强将数据集增加到3300张图像。然后,我们在口罩数据集上训练并测试了多个Tensorflow最先进的目标检测模型,并选择了准确率达99.8%的Faster R-CNN Inception ResNet V2网络。对于身体距离检测,我们使用Faster R-CNN Inception V2来检测人员。使用一个变换矩阵来消除相机角度对图像上物体距离的影响。欧几里得距离利用变换后图像的像素来计算人员之间的实际距离。设定六英尺的阈值来捕捉违反身体距离的情况。我们还使用迁移学习来训练模型。最终模型应用于德克萨斯州休斯顿道路维护项目的四个视频中,有效地检测了口罩佩戴情况和身体距离。我们建议建筑业主使用所提出的系统来提高疫情期间建筑工人的安全性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7373/8554503/aa48e99d89d2/42979_2021_894_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验