Suppr超能文献

改进的有机体系分子动力学结构选择方案:探究不同小波族的价值。

Improved Protocol for the Selection of Structures from Molecular Dynamics of Organic Systems in Solution: The Value of Investigating Different Wavelet Families.

机构信息

Chemistry Department, Federal University of Lavras, 37200-000Lavras, MG, Brazil.

Federal Institute of Education Science and Technology of Espírito Santo, Vila Velha29100-000, Brazil.

出版信息

J Chem Theory Comput. 2022 Oct 11;18(10):5810-5818. doi: 10.1021/acs.jctc.2c00593. Epub 2022 Sep 14.

Abstract

Wavelets are mathematical tools used to decompose and represent another function described in the time domain, allowing the study of each component of the original function with a scale-compatible resolution. Thus, these transforms have been used to select conformations from molecular dynamics (MD) trajectories in systems of fundamental and technological interest. Recently, our research group has used wavelets to develop and validate a method, meant to select structures from MD trajectories, which we named OWSCA (optimal wavelet signal compression algorithm). Here, we moved forward on this project by demonstrating the efficacy of this method on the study of three different systems (non-flexible organic, flexible organic, and protein). For each system, 93 wavelets were investigated to verify which is the best one for a given organic system. The results show that the best wavelets were different for each system and, also, very close to the experimental values, with the wavelets db1, rbio 3.1, and bior1.1 being selected for the non-flexible, flexible organic, and protein systems, respectively. This reinforces our OWSCA as a very efficient and promising method for the selection of structures from MD trajectories of different classes of compounds. Our findings also point out that additional studies considering wavelet families are needed for defining the best wavelet for representing each system under study.

摘要

小波是用于分解和表示时域中描述的另一个函数的数学工具,允许以与比例兼容的分辨率研究原始函数的每个分量。因此,这些变换已被用于从具有基本和技术兴趣的系统的分子动力学 (MD) 轨迹中选择构象。最近,我们的研究小组使用小波开发并验证了一种从 MD 轨迹中选择结构的方法,我们将其命名为 OWSCA(最优小波信号压缩算法)。在这里,我们通过在三个不同系统(非柔性有机、柔性有机和蛋白质)上研究该方法的功效来推进该项目。对于每个系统,研究了 93 个小波,以验证对于给定的有机系统哪个是最佳的。结果表明,对于每个系统,最佳小波都不同,并且非常接近实验值,分别为非柔性有机、柔性有机和蛋白质系统选择了 db1、rbio 3.1 和 bior1.1 小波。这证实了我们的 OWSCA 是一种非常有效和有前途的方法,可用于从不同类化合物的 MD 轨迹中选择结构。我们的研究结果还指出,需要进行额外的考虑小波族的研究,以定义表示每个研究系统的最佳小波。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验