Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany.
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Langmuir. 2022 Sep 27;38(38):11650-11657. doi: 10.1021/acs.langmuir.2c01508. Epub 2022 Sep 14.
The DNA origami technique allows the precise synthesis of complex, biocompatible nanomaterials containing small molecules, biomolecules, and inorganic nanoparticles. The negatively charged phosphates in the backbone make DNA highly water-soluble and require salts to shield its electrostatic repulsion. DNA origamis are therefore not soluble in most organic solvents. While this is not problematic for applications in biochemistry, biophysics, or nanomedicine, other potential applications, processes, and substrates are incompatible with saline solutions, which include the synthesis of many nanomaterials, and reactions in templated synthesis, the operation of nanoelectronic devices, or semiconductor fabrication. To overcome this limitation, we coated DNA origami with amphiphilic poly(ethylene glycol) polylysine block copolymers and transferred them into various organic solvents including chloroform, dichloromethane, acetone, or 1-propanol. Our approach maintains the shape of the nanostructures and protects functional elements bound to the structure, such as fluorophores, gold nanoparticles, or proteins. The DNA origami polyplex micellization (DOPM) strategy hence enables solubilization or a phase transfer of complex structures into various organic solvents, which significantly expands the use of DNA origami for a range of potential applications and technical processes.
DNA 折纸技术允许精确合成含有小分子、生物分子和无机纳米粒子的复杂、生物相容性的纳米材料。骨架中的带负电荷的磷酸根使 DNA 高度水溶性,并需要盐来屏蔽其静电排斥。因此,DNA 折纸术在大多数有机溶剂中都不溶解。虽然这对于生物化学、生物物理学或纳米医学中的应用没有问题,但其他潜在的应用、过程和底物与盐溶液不兼容,其中包括许多纳米材料的合成以及模板合成中的反应、纳米电子设备的操作或半导体制造。为了克服这一限制,我们用两亲性聚(乙二醇)聚赖氨酸嵌段共聚物对 DNA 折纸术进行了涂层,并将其转移到各种有机溶剂中,包括氯仿、二氯甲烷、丙酮或 1-丙醇。我们的方法保持了纳米结构的形状,并保护了结合到结构上的功能元件,如荧光团、金纳米粒子或蛋白质。因此,DNA 折纸多聚物胶束化(DOPM)策略能够将复杂结构溶解或相转移到各种有机溶剂中,从而极大地扩展了 DNA 折纸术在一系列潜在应用和技术过程中的用途。