Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK - 8000 Aarhus C, Denmark.
Chem Rev. 2019 May 22;119(10):6384-6458. doi: 10.1021/acs.chemrev.8b00570. Epub 2019 Feb 4.
The predictable nature of DNA interactions enables the programmable assembly of highly advanced 2D and 3D DNA structures of nanoscale dimensions. The access to ever larger and more complex structures has been achieved through decades of work on developing structural design principles. Concurrently, an increased focus has emerged on the applications of DNA nanostructures. In its nature, DNA is chemically inert and nanostructures based on unmodified DNA mostly lack function. However, functionality can be obtained through chemical modification of DNA nanostructures and the opportunities are endless. In this review, we discuss methodology for chemical functionalization of DNA nanostructures and provide examples of how this is being used to create functional nanodevices and make DNA nanostructures more applicable. We aim to encourage researchers to adopt chemical modifications as part of their work in DNA nanotechnology and inspire chemists to address current challenges and opportunities within the field.
DNA 相互作用的可预测性使得高度先进的二维和三维 DNA 纳米结构的可编程组装成为可能。通过几十年的结构设计原则开发工作,已经可以获得越来越大、越来越复杂的结构。同时,人们越来越关注 DNA 纳米结构的应用。从本质上讲,DNA 是化学惰性的,基于未修饰 DNA 的纳米结构大多缺乏功能。然而,通过对 DNA 纳米结构进行化学修饰可以获得功能,而且机会是无穷无尽的。在这篇综述中,我们讨论了 DNA 纳米结构的化学功能化方法,并提供了一些例子,说明如何利用这些方法来创建功能性纳米器件并使 DNA 纳米结构更具适用性。我们的目的是鼓励研究人员将化学修饰作为他们在 DNA 纳米技术工作的一部分,并激发化学家解决该领域当前的挑战和机遇。