Chakraborty Gurudas, Balinin Konstantin, Portale Giuseppe, Loznik Mark, Polushkin Evgeny, Weil Tanja, Herrmann Andreas
Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands . Email:
DWI-Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , 52056 Aachen , Germany.
Chem Sci. 2019 Sep 12;10(43):10097-10105. doi: 10.1039/c9sc02598g. eCollection 2019 Nov 21.
Chemically modified nucleic acids have long served as a very important class of bio-hybrid structures. In particular, the modification with PEG has advanced the scope and performance of oligonucleotides in materials science, catalysis and therapeutics. Most of the applications involving pristine or modified DNA rely on the potential of DNA to form a double-stranded structure. However, a substantial requirement for metal-cations to achieve hybridization has restricted the range of applications. To extend the applicability of DNA in salt-free or low ionic strength aqueous medium, we introduce noncovalent DNA-PEG constructs that allow canonical base-pairing between individually PEGylated complementary strands resulting in a double-stranded structure in salt-free aqueous medium. This method relies on grafting of amino-terminated PEG polymers electrostatically onto the backbone of DNA, which results in the formation of a PEG-envelope. The specific charge interaction of PEG molecules with DNA, absolute absence of metal ions within the PEGylated DNA molecules and formation of a double helix that is significantly more stable than the duplex in an ionic buffer have been unequivocally demonstrated using multiple independent characterization techniques.
化学修饰的核酸长期以来一直是一类非常重要的生物杂交结构。特别是,聚乙二醇(PEG)修饰拓展了寡核苷酸在材料科学、催化和治疗领域的应用范围和性能。大多数涉及原始或修饰DNA的应用都依赖于DNA形成双链结构的潜力。然而,实现杂交对金属阳离子的大量需求限制了应用范围。为了扩展DNA在无盐或低离子强度水性介质中的适用性,我们引入了非共价DNA-PEG构建体,该构建体允许各自PEG化的互补链之间进行经典碱基配对,从而在无盐水性介质中形成双链结构。该方法依赖于将氨基末端PEG聚合物静电接枝到DNA主链上,从而形成PEG包膜。使用多种独立的表征技术已明确证明了PEG分子与DNA的特定电荷相互作用、PEG化DNA分子中绝对不存在金属离子以及形成的双螺旋比离子缓冲液中的双链体明显更稳定。