Suppr超能文献

基于计算神经网络的大学英语语法纠错模型。

A Computational Neural Network Model for College English Grammar Correction.

机构信息

School of General Caliber-oriented Education, Wuchang University of Technology, Wuhan 430000, China.

出版信息

Comput Intell Neurosci. 2022 Sep 5;2022:9592200. doi: 10.1155/2022/9592200. eCollection 2022.

Abstract

For the error correction of English grammar, if there are errors in the semantic units (words and sentences), it will inevitably affect the subsequent text analysis and semantic understanding, and ultimately reduce the overall performance of the practical application system. Therefore, intelligent error detection and correction of the word and grammatical errors in English texts is one of the key and difficult points of natural language processing. This exploration innovatively combines a computational neural model with college grammar error correction to improve the accuracy of college grammar error correction. It studies the computational neural model in English grammar error correction based on a neural network named Knowledge and Neural machine translation powered College English Grammar Typo Correction (KNGTC). First, the Recurrent Neural Network is introduced, and the overall structure of the English grammatical error correction neural model is constructed. Moreover, the supervised training of Attention is discussed, and the experimental environment and experimental data are given. The results show that KNGTC has high accuracy in college English grammar correction, and the accuracy of this model in CET-4 and CET-6 writing can reach 82.69%. The English grammar error correction model based on the computational neural network has perfect function and strong error correction ability. The optimization and perfection of the model can improve students' English grammar level, which has certain practical value. After years of continuous optimization and improvement, English grammar error correction technology has entered a performance bottleneck. This mode's construction can break the current technology's limitations and bring a better user experience. Therefore, it is very valuable to study the error correction model of English grammar in practical application.

摘要

对于英语语法错误的纠正,如果语义单元(单词和句子)存在错误,就不可避免地会影响后续的文本分析和语义理解,最终降低实际应用系统的整体性能。因此,智能检测和纠正英文文本中的单词和语法错误是自然语言处理的关键和难点之一。本研究创新性地将计算神经模型与大学语法纠错相结合,以提高大学语法纠错的准确性。该研究基于神经网络,名为知识与神经机器翻译驱动的大学英语语法纠错(KNGTC),探索了英语语法纠错中的计算神经模型。首先,引入了递归神经网络,并构建了英语语法纠错神经模型的整体结构。此外,还讨论了注意力的监督训练,并给出了实验环境和实验数据。结果表明,KNGTC 在大学英语语法纠正方面具有很高的准确性,该模型在 CET-4 和 CET-6 写作中的准确性可达 82.69%。基于计算神经网络的英语语法错误纠正模型具有完善的功能和强大的纠错能力。模型的优化和完善可以提高学生的英语语法水平,具有一定的实用价值。经过多年的不断优化和改进,英语语法纠错技术已经进入了性能瓶颈期。这种模式的构建可以打破当前技术的局限性,带来更好的用户体验。因此,研究实际应用中的英语语法纠错模型具有很高的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db52/9467766/ccde3e8031f0/CIN2022-9592200.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验