Suppr超能文献

在流聚焦微通道中预测负载表面活性剂的液滴尺寸:一种数据驱动的方法。

Surfactant-laden droplet size prediction in a flow-focusing microchannel: a data-driven approach.

机构信息

ThAMeS Multiphase, Department of Chemical Engineering, University College London, UK.

Data Science Institute, Imperial College London, UK.

出版信息

Lab Chip. 2022 Oct 11;22(20):3848-3859. doi: 10.1039/d2lc00416j.

Abstract

The control of droplet formation and size using microfluidic devices is a critical operation for both laboratory and industrial applications, in micro-dosage. Surfactants can be added to improve the stability and control the size of the droplets by modifying their interfacial properties. In this study, a large-scale data set of droplet size was obtained from high-speed imaging experiments conducted on a flow-focusing microchannel where aqueous surfactant-laden droplets were generated in silicone oil. Three types of surfactants were used including anionic, cationic and non-ionic at concentrations below and above the critical micelle concentration (CMC). To predict the final droplet size as a function of flow rates, surfactant type and concentration of surfactant, two data-driven models were built. Using a Bayesian regularised artificial neural network and XGBoost, these models were initially based on four inputs (flow rates of the two phases, interfacial tension at equilibrium and the normalised surfactant concentration). The mean absolute percentage errors (MAPE) show that data-driven models are more accurate (MAPE = 3.9%) compared to semi-empirical models (MAPE = 11.4%). To overcome experimental difficulties in acquiring accurate interfacial tension values under some conditions, both models were also trained with reduced inputs by removing the interfacial tension. The results show again a very good prediction of the droplet diameter. Finally, over 10 000 synthetic data were generated, based on the initial data set, with a Variational Autoencoder (VAE). The high-fidelity of the extended synthetic data set highlights that this method can be a quick and low-cost alternative to study microdroplet formation in future lab on a chip applications, where experimental data may not be readily available.

摘要

使用微流控设备控制液滴的形成和大小对于实验室和工业应用中的微剂量都至关重要。表面活性剂可以添加到微通道中,通过改变其界面性质来提高液滴的稳定性并控制液滴的大小。在这项研究中,通过在流动聚焦微通道中进行高速成像实验,获得了大量的液滴尺寸数据集,其中在硅油中生成了含有表面活性剂的水相液滴。使用了三种类型的表面活性剂,包括阴离子、阳离子和非离子,浓度低于和高于临界胶束浓度(CMC)。为了预测最终液滴尺寸作为流速、表面活性剂类型和表面活性剂浓度的函数,建立了两个数据驱动模型。使用贝叶斯正则化人工神经网络和 XGBoost,这些模型最初基于四个输入(两相的流速、平衡时的界面张力和归一化表面活性剂浓度)。平均绝对百分比误差(MAPE)表明,与半经验模型(MAPE=11.4%)相比,数据驱动模型更准确(MAPE=3.9%)。为了克服在某些条件下获取准确界面张力值的实验困难,两个模型都通过去除界面张力来用较少的输入进行训练。结果再次表明对液滴直径的很好的预测。最后,基于初始数据集,使用变分自动编码器(VAE)生成了超过 10000 个合成数据。扩展合成数据集的高保真度突出表明,该方法可以成为未来在芯片实验室中研究微液滴形成的快速、低成本替代方法,在这些应用中,实验数据可能不容易获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验