Gelado Sofia H, Quilodrán-Casas César, Chagot Loïc
Department of Computing, Imperial College London, London SW7 2AZ, UK.
Data Science Institute, Imperial College London, London SW7 2AZ, UK.
Micromachines (Basel). 2023 Oct 22;14(10):1964. doi: 10.3390/mi14101964.
Microfluidics is a highly interdisciplinary field where the integration of deep-learning models has the potential to streamline processes and increase precision and reliability. This study investigates the use of deep-learning methods for the accurate detection and measurement of droplet diameters and the image restoration of low-resolution images. This study demonstrates that the Segment Anything Model (SAM) provides superior detection and reduced droplet diameter error measurement compared to the Circular Hough Transform, which is widely implemented and used in microfluidic imaging. SAM droplet detections prove to be more robust to image quality and microfluidic images with low contrast between the fluid phases. In addition, this work proves that a deep-learning super-resolution network MSRN-BAM can be trained on a dataset comprising of droplets in a flow-focusing microchannel to super-resolve images for scales ×2, ×4, ×6, ×8. Super-resolved images obtain comparable detection and segmentation results to those obtained using high-resolution images. Finally, the potential of deep learning in other computer vision tasks, such as denoising for microfluidic imaging, is shown. The results show that a DnCNN model can denoise effectively microfluidic images with additive Gaussian noise up to σ = 4. This study highlights the potential of employing deep-learning methods for the analysis of microfluidic images.
微流控技术是一个高度跨学科的领域,深度学习模型的集成有潜力简化流程并提高精度和可靠性。本研究调查了使用深度学习方法进行液滴直径的准确检测和测量以及低分辨率图像的图像恢复。本研究表明,与在微流控成像中广泛应用的圆形霍夫变换相比,任何分割模型(SAM)提供了更好的检测效果并减少了液滴直径误差测量。SAM液滴检测被证明对图像质量以及流体相之间对比度低的微流控图像更具鲁棒性。此外,这项工作证明,可以在由流动聚焦微通道中的液滴组成的数据集上训练深度学习超分辨率网络MSRN - BAM,以对×2、×4、×6、×8尺度的图像进行超分辨率处理。超分辨率图像获得了与使用高分辨率图像时相当的检测和分割结果。最后,展示了深度学习在其他计算机视觉任务中的潜力,例如微流控成像的去噪。结果表明,DnCNN模型可以有效地对高达σ = 4的加性高斯噪声的微流控图像进行去噪。本研究突出了采用深度学习方法分析微流控图像的潜力。