Suppr超能文献

通过使用机器学习的液滴微流控实验研究非晶态碳酸钙的亚稳性。

Investigating the metastability of amorphous calcium carbonate by droplet microfluidics experiments using machine learning.

作者信息

Santoso Ryan, Guignon Lisa, Deissmann Guido, Poonoosamy Jenna

机构信息

Institute of Fusion Energy and Nuclear Waste Management - Nuclear Waste Management (IFN-2), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany.

Grenoble INP Ense3, Université Grenoble Alpes, 38000, Grenoble, France.

出版信息

Sci Rep. 2025 Jun 20;15(1):20178. doi: 10.1038/s41598-025-05984-0.

Abstract

Amorphous calcium carbonate (ACC) plays an important role in the crystallization pathways of calcite and its polymorphs influencing many natural and anthropogenic processes, such as carbon sequestration. Characterizing the dissolution rate of ACC in presence of additives of contaminants in favor of crystalline phases is challenging as such reactions occur readily in bulk solution. Droplet microfluidics offers a solution by confining ACC within a droplet, enabling a quantification of the transformation rate of ACC into crystalline phases. However, accurate quantification of this transformation requires analyzing more than thousands of droplets identifying the different polymorphs of calcium carbonate during an experiment, which is labor-intensive. Here we develop a visual-based machine learning method, combining cascading U-Net and K-Means clustering, to allow efficient analysis of droplet microfluidics experiment results. Using our method, we accurately inspect 11,288 droplets over 6 hours of experimental time to identify the polymorphs, using a CPU core in a laptop for only 42 minutes. This is achieved with manual labeling of 11 experimental microscopy images before augmentations. From our analyses the transformation rate of ACC into its crystalline phases can be inferred. The transformation rate indicates an increasing stability of the ACC phase in confinement. Our method is generalizable and can be applied to different setups of droplet microfluidics experiments, facilitating efficient experimentation and analysis of complex crystallization processes.

摘要

无定形碳酸钙(ACC)在方解石及其多晶型物的结晶途径中起着重要作用,影响着许多自然和人为过程,如碳固存。在有利于结晶相的污染物添加剂存在的情况下,表征ACC的溶解速率具有挑战性,因为此类反应在本体溶液中很容易发生。微滴微流控技术提供了一种解决方案,即将ACC限制在一个微滴内,从而能够量化ACC向结晶相的转变速率。然而,要准确量化这种转变,需要在实验过程中分析数千个以上的微滴,以识别碳酸钙的不同多晶型物,这是一项劳动密集型工作。在这里,我们开发了一种基于视觉的机器学习方法,结合级联U-Net和K-Means聚类,以高效分析微滴微流控实验结果。使用我们的方法,我们在6小时的实验时间内准确检测了11288个微滴以识别多晶型物,仅使用笔记本电脑中的一个CPU核心就只需42分钟。这是在增强之前手动标记11张实验显微镜图像的情况下实现的。通过我们的分析,可以推断出ACC向其结晶相的转变速率。该转变速率表明在受限条件下ACC相的稳定性增加。我们的方法具有通用性,可应用于不同设置的微滴微流控实验,便于对复杂的结晶过程进行高效实验和分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cd8/12181231/4f573025f5d2/41598_2025_5984_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验