Suppr超能文献

量纲分析与人工智能相结合用于非牛顿液滴生成。

Dimensional analysis meets AI for non-Newtonian droplet generation.

作者信息

Hormozinezhad Farnoosh, Barnes Claire, Fabregat Alexandre, Cito Salvatore, Del Giudice Francesco

机构信息

Departament d'Enginyeria Mecanica, Universitat Rovira i Virgili, Tarragona, Spain.

Department of Biomedical Engineering, Swansea University, UK.

出版信息

Lab Chip. 2025 Mar 25;25(7):1681-1693. doi: 10.1039/d4lc00946k.

Abstract

Non-Newtonian droplets are used across various applications, including pharmaceuticals, food processing, drug delivery and material science. However, predicting droplet formation using such complex fluids is challenging due to the intricate multiphase interactions between fluids with varying viscosities, elastic properties and geometrical constraints. In this study, we introduce a novel hybrid machine-learning architecture that integrates dimensional analysis with machine learning to predict the flow rates required to generate droplets with specified sizes in systems involving non-Newtonian fluids. Unlike previous approaches, our model is designed to accommodate shear-rate-dependent viscosities and a simple estimate of the elastic properties of the fluids. It provides accurate predictions of the dispersed and continuous phases flow rates for given droplet length, height, and viscosity curves, even when the fluid properties deviate from those used during training. Our model demonstrates strong predictive power, achieving values of up to 0.82 for unseen data. The significance of our work lies in its ability to generalize across a broad range of non-Newtonian systems having different viscosity curves, offering a powerful tool for optimizing droplet generation. This model represents a significant advancement in the application of machine learning to microfluidics, providing new opportunities for efficient experimental design in complex multiphase systems.

摘要

非牛顿液滴被广泛应用于各个领域,包括制药、食品加工、药物递送和材料科学。然而,由于具有不同粘度、弹性特性和几何约束的流体之间存在复杂的多相相互作用,使用这种复杂流体预测液滴形成具有挑战性。在本研究中,我们引入了一种新颖的混合机器学习架构,该架构将量纲分析与机器学习相结合,以预测在涉及非牛顿流体的系统中生成特定尺寸液滴所需的流速。与以前的方法不同,我们的模型旨在适应与剪切速率相关的粘度以及对流体弹性特性的简单估计。即使流体特性与训练期间使用的特性不同,它也能针对给定的液滴长度、高度和粘度曲线准确预测分散相和连续相的流速。我们的模型显示出强大的预测能力,对于未见数据,其值高达0.82。我们工作的意义在于它能够推广到具有不同粘度曲线的广泛非牛顿系统中,为优化液滴生成提供了一个强大的工具。该模型代表了机器学习在微流体应用中的重大进展,为复杂多相系统中的高效实验设计提供了新机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验