Suppr超能文献

探索喜马拉雅山西部疟疾传播的热极限。

Exploring the thermal limits of malaria transmission in the western Himalaya.

作者信息

Mozaffer Farhina, Menon Gautam I, Ishtiaq Farah

机构信息

The Institute of Mathematical Sciences, CIT Campus Chennai India.

Homi Bhabha National Institute, Training School Complex Mumbai India.

出版信息

Ecol Evol. 2022 Sep 12;12(9):e9278. doi: 10.1002/ece3.9278. eCollection 2022 Sep.

Abstract

Environmental temperature is a key driver of malaria transmission dynamics. Using detailed temperature records from four sites: low elevation (1800), mid elevation (2200 m), and high elevation (2600-3200 m) in the western Himalaya, we model how temperature regulates parasite development rate (the inverse of the extrinsic incubation period, EIP) in the wild. Using a Briére parametrization of the EIP, combined with Bayesian parameter inference, we study the thermal limits of transmission for avian () and human parasites ( and ) as well as for two malaria-like avian parasites, and . We demonstrate that temperature conditions can substantially alter the incubation period of parasites at high elevation sites (2600-3200 m) leading to restricted parasite development or long transmission windows. The thermal limits (optimal temperature) for parasites were 15.62-34.92°C (30.04°C) for , 13.51-34.08°C (29.02°C) for , 12.56-34.46°C (29.16°C) for and for two malaria-like parasites, 12.01-29.48°C (25.16°C) for spp. and 11.92-29.95°C (25.51°C) for spp. We then compare estimates of EIP based on measures of mean temperature versus hourly temperatures to show that EIP days vary in cold versus warm environments. We found that human parasites experience a limited transmission window at 2600 m. In contrast, for avian transmission was not possible between September and March at 2600 m. In addition, temperature conditions suitable for both and transmission were obtained from June to August and in April, at 2600 m. Finally, we use temperature projections from a suite of climate models to predict that by 2040, high elevation sites (~2600 m) will have a temperature range conducive for malaria transmission, albeit with a limited transmission window. Our study highlights the importance of accounting for fine-scale thermal effects in the expansion of the range of the malaria parasite with global climate change.

摘要

环境温度是疟疾传播动态的关键驱动因素。利用来自喜马拉雅山西部四个地点的详细温度记录:低海拔(1800米)、中海拔(2200米)和高海拔(2600 - 3200米),我们模拟了温度如何在野外调节寄生虫发育速率(外在潜伏期EIP的倒数)。使用EIP的Briére参数化方法,结合贝叶斯参数推断,我们研究了鸟类()和人类寄生虫(和)以及两种类疟疾鸟类寄生虫和的传播热极限。我们证明,温度条件可显著改变高海拔地区(2600 - 3200米)寄生虫的潜伏期,导致寄生虫发育受限或传播窗口延长。对于寄生虫,的热极限(最适温度)为15.62 - 34.92°C(30.04°C),的为13.51 - 34.08°C(29.02°C),的为12.56 - 34.46°C(29.16°C),对于两种类疟疾寄生虫,spp.的为12.01 - 29.48°C(25.16°C),spp.的为11.92 - 29.95°C(25.51°C)。然后,我们比较基于平均温度测量值与每小时温度测量值的EIP估计值,以表明EIP天数在寒冷与温暖环境中有所不同。我们发现,人类寄生虫在2600米处的传播窗口有限。相比之下,对于鸟类,在2600米处9月至次年3月期间无法传播。此外,在2600米处,6月至8月以及4月可获得适合和传播的温度条件。最后,我们使用一系列气候模型的温度预测结果来预测,到2040年,高海拔地区(约2600米)将拥有有利于疟疾传播的温度范围,尽管传播窗口有限。我们的研究强调了在全球气候变化背景下,考虑精细尺度热效应对于疟疾寄生虫范围扩展的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbc3/9465399/86697f422bd5/ECE3-12-e9278-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验